A Low Power Non-Volatile Memory Element Based on Copper in Deposited Silicon Oxide

Muralikrishnan Balakrishnan, S. C. P. Thermadam, M. Mitkova, M. Kozicki
{"title":"A Low Power Non-Volatile Memory Element Based on Copper in Deposited Silicon Oxide","authors":"Muralikrishnan Balakrishnan, S. C. P. Thermadam, M. Mitkova, M. Kozicki","doi":"10.1109/NVMT.2006.378887","DOIUrl":null,"url":null,"abstract":"We describe the electrical characteristics of W-(Cu/SiO2)-Cu switching elements formed by thermal diffusion of copper into deposited silicon oxide. These devices switch via the electrochemical formation of a conducting filament within the high resistance Cu/SiO2 electrolyte film. Unwritten and fully- erased devices of 350 nm to 1 mum in diameter transitioned from a high resistance state in excess of 100 MOmega to their on state at 1.3 V or less, and the erase was initiated below -0.5 V. The on resistance was a function of programming current and a range of approximately 2 MOmega to below 300 Omega was demonstrated. Switching was possible using 3 V pulses of 1 mus duration and retention was good with no systematic upward drift evident beyond 105 s for devices programmed at 10 muA and read at 300 mV. Endurance for 350 nm diameter devices was determined to be in excess of 107 cycles.","PeriodicalId":263387,"journal":{"name":"2006 7th Annual Non-Volatile Memory Technology Symposium","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 7th Annual Non-Volatile Memory Technology Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NVMT.2006.378887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We describe the electrical characteristics of W-(Cu/SiO2)-Cu switching elements formed by thermal diffusion of copper into deposited silicon oxide. These devices switch via the electrochemical formation of a conducting filament within the high resistance Cu/SiO2 electrolyte film. Unwritten and fully- erased devices of 350 nm to 1 mum in diameter transitioned from a high resistance state in excess of 100 MOmega to their on state at 1.3 V or less, and the erase was initiated below -0.5 V. The on resistance was a function of programming current and a range of approximately 2 MOmega to below 300 Omega was demonstrated. Switching was possible using 3 V pulses of 1 mus duration and retention was good with no systematic upward drift evident beyond 105 s for devices programmed at 10 muA and read at 300 mV. Endurance for 350 nm diameter devices was determined to be in excess of 107 cycles.
基于铜沉积氧化硅的低功耗非易失性存储元件
我们描述了由铜热扩散到沉积的氧化硅中形成的W-(Cu/SiO2)-Cu开关元件的电学特性。这些器件通过高电阻Cu/SiO2电解质膜内导电丝的电化学形成来切换。直径为350 nm至1 μ m的未写入和完全擦除器件从超过100 μ m的高电阻状态转变为1.3 V或更低的导通状态,擦除开始于-0.5 V以下。导通电阻是编程电流的函数,其范围约为2 ω至300 ω以下。开关可以使用持续时间为1 mus的3v脉冲,并且保持良好,对于编程为10 muA并读取为300 mV的器件,在105 s之后没有明显的系统向上漂移。350 nm直径器件的续航时间超过107次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信