3D Morphable Ear Model: A Complete Pipeline from Ear Segmentation to Statistical Modeling

M. Mursalin, S. Islam, S. Z. Gilani
{"title":"3D Morphable Ear Model: A Complete Pipeline from Ear Segmentation to Statistical Modeling","authors":"M. Mursalin, S. Islam, S. Z. Gilani","doi":"10.1109/DICTA52665.2021.9647339","DOIUrl":null,"url":null,"abstract":"The shape of human ear contains crucial information that can be used for biometric identification. Analysis of the ear shape can be improved by using a statistical shape model known as 3D Morphable Ear Model (3DMEM). In this work, we propose a complete pipeline to create the 3DMEM by following a three-step procedure. First, a large ear database is created by segmenting ears from 3D profile faces using a deep convolutional neural network. Next, dense correspondence between 3D ears is established using Generalized Procrustes Analysis (GPA). Finally, the 3DMEM is constructed using Principal Component Analysis (PCA). Our results show that 3DMEM can generalize well on unseen 3D ear data.","PeriodicalId":424950,"journal":{"name":"2021 Digital Image Computing: Techniques and Applications (DICTA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA52665.2021.9647339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The shape of human ear contains crucial information that can be used for biometric identification. Analysis of the ear shape can be improved by using a statistical shape model known as 3D Morphable Ear Model (3DMEM). In this work, we propose a complete pipeline to create the 3DMEM by following a three-step procedure. First, a large ear database is created by segmenting ears from 3D profile faces using a deep convolutional neural network. Next, dense correspondence between 3D ears is established using Generalized Procrustes Analysis (GPA). Finally, the 3DMEM is constructed using Principal Component Analysis (PCA). Our results show that 3DMEM can generalize well on unseen 3D ear data.
三维变形耳模型:从耳分割到统计建模的完整流水线
人耳的形状包含了可以用于生物识别的关键信息。耳朵形状的分析可以通过使用被称为3D变形耳朵模型(3DMEM)的统计形状模型来改进。在这项工作中,我们提出了一个完整的管道,通过以下三个步骤来创建3DMEM。首先,利用深度卷积神经网络从三维侧面分割耳朵,创建一个大型的耳朵数据库。其次,利用广义普氏分析(GPA)建立三维耳间的密集对应关系。最后,利用主成分分析(PCA)构建3DMEM模型。结果表明,3DMEM可以很好地泛化未见过的三维耳朵数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信