Automatic Indonesian Image Caption Generation using CNN-LSTM Model and FEEH-ID Dataset

E. Mulyanto, Esther Irawati Setiawan, E. M. Yuniarno, M. Purnomo
{"title":"Automatic Indonesian Image Caption Generation using CNN-LSTM Model and FEEH-ID Dataset","authors":"E. Mulyanto, Esther Irawati Setiawan, E. M. Yuniarno, M. Purnomo","doi":"10.1109/CIVEMSA45640.2019.9071632","DOIUrl":null,"url":null,"abstract":"Image captioning is a challenge in computer vision research. This paper extends research on automatic image captioning generation in the Indonesian dimension. Description in Indonesian sentences is generated for unlabeled images. The dataset used is FEEH-ID, this is the first Indonesian image captioning dataset. This research is crucial due to unavailability of a corpus for image captioning in Indonesian. This paper will compare the experimental results in the FEEH-ID dataset with English, Chinese and Japanese datasets using the CNN and LSTM models. The performance of the model proposed in the test set provides promising results of 50.0 for the BLEU-1 score and 23.9 for BLEU-3, which is above average of the Bleu evaluation results in other language datasets. The merging model between CNN and LSTM displays pretty good results for the FEEH-ID dataset. The experimental results will be better with a larger dataset.","PeriodicalId":293990,"journal":{"name":"2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA45640.2019.9071632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Image captioning is a challenge in computer vision research. This paper extends research on automatic image captioning generation in the Indonesian dimension. Description in Indonesian sentences is generated for unlabeled images. The dataset used is FEEH-ID, this is the first Indonesian image captioning dataset. This research is crucial due to unavailability of a corpus for image captioning in Indonesian. This paper will compare the experimental results in the FEEH-ID dataset with English, Chinese and Japanese datasets using the CNN and LSTM models. The performance of the model proposed in the test set provides promising results of 50.0 for the BLEU-1 score and 23.9 for BLEU-3, which is above average of the Bleu evaluation results in other language datasets. The merging model between CNN and LSTM displays pretty good results for the FEEH-ID dataset. The experimental results will be better with a larger dataset.
基于CNN-LSTM模型和feh - id数据集的印尼语图像标题自动生成
图像字幕是计算机视觉研究中的一个挑战。本文扩展了印尼语维度图像字幕自动生成的研究。印尼语句子的描述是为未标记的图像生成的。使用的数据集是feh - id,这是印度尼西亚第一个图像字幕数据集。这项研究是至关重要的,因为无法获得印尼语图像字幕的语料库。本文将使用CNN和LSTM模型将feh - id数据集与英语、中文和日语数据集的实验结果进行比较。在测试集中提出的模型的性能得到了很好的结果,Bleu -1得分为50.0,Bleu -3得分为23.9,高于其他语言数据集中Bleu评价结果的平均水平。CNN和LSTM的合并模型在feh - id数据集上显示了相当好的结果。数据集越大,实验结果越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信