Structure-borne and Air-borne Sound Data for Condition Monitoring Applications

S. Matzka, Johannes Pilz, A. Franke
{"title":"Structure-borne and Air-borne Sound Data for Condition Monitoring Applications","authors":"S. Matzka, Johannes Pilz, A. Franke","doi":"10.1109/AI4I51902.2021.00009","DOIUrl":null,"url":null,"abstract":"This paper provides a new machine learning dataset that contains labeled structure-borne and air-borne sound data for eight different operating conditions of a condition monitoring demonstrator. Our dataset is used to train and evaluate multiple classifiers in order to establish a baseline accuracy for classifiers on this dataset. It can be shown that both structure-borne and airborne sound data provide relevant information to train performant condition monitoring classifiers, which can be further increased by using a combination of both sound modalities.","PeriodicalId":114373,"journal":{"name":"2021 4th International Conference on Artificial Intelligence for Industries (AI4I)","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I51902.2021.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper provides a new machine learning dataset that contains labeled structure-borne and air-borne sound data for eight different operating conditions of a condition monitoring demonstrator. Our dataset is used to train and evaluate multiple classifiers in order to establish a baseline accuracy for classifiers on this dataset. It can be shown that both structure-borne and airborne sound data provide relevant information to train performant condition monitoring classifiers, which can be further increased by using a combination of both sound modalities.
状态监测应用的结构声和空气声数据
本文提供了一个新的机器学习数据集,该数据集包含状态监测演示器的八种不同运行状态的标记结构声和空气声数据。我们的数据集用于训练和评估多个分类器,以便在此数据集上为分类器建立基线精度。研究表明,结构声和机载声数据都为训练性能状态监测分类器提供了相关信息,通过结合使用两种声音模式,可以进一步提高分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信