{"title":"Penetration and Reflection Characteristics in Millimeter-Wave Indoor Channels","authors":"M. Khatun, Changyu Guo, H. Mehrpouyan","doi":"10.1109/APWC52648.2021.9539540","DOIUrl":null,"url":null,"abstract":"This paper presents indoor penetration and reflection characteristics of common building materials at millimeter-wave (mmWave) frequencies. These channel properties are carefully studied at 60, 71, and 81 GHz using a narrow-band signal with directional horn antennas. We measured the reflection coefficients at these high frequencies with varying incident angles to the surface of a material. Average penetration loss of material is also studied based on antenna polarization effects (co-polarization and cross-polarization) at 73 GHz channel. Materials include drywall and plywood for these channel characteristics in an indoor lab environment. It is found that the co-polarization has a higher path gain of 45.4 dB in the line-of-sight (LOS) scenario as compared to cross-polarization for the 73 GHz channel. Moreover, average penetration loss of plywood is slightly increased for cross-polarization (8.96 dB/cm) as compared to the co-polarization antenna (8.10 dB/cm) penetration loss. Results show that reflection coefficients, |Γ⊥| are stronger at higher frequencies, and the range of |Γ⊥| varies from 0.38 to 0.83 with impinging direction (i.e., to the surface of drywall) for 20° to 60°, respectively, in the 81 GHz channel.","PeriodicalId":253455,"journal":{"name":"2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWC52648.2021.9539540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper presents indoor penetration and reflection characteristics of common building materials at millimeter-wave (mmWave) frequencies. These channel properties are carefully studied at 60, 71, and 81 GHz using a narrow-band signal with directional horn antennas. We measured the reflection coefficients at these high frequencies with varying incident angles to the surface of a material. Average penetration loss of material is also studied based on antenna polarization effects (co-polarization and cross-polarization) at 73 GHz channel. Materials include drywall and plywood for these channel characteristics in an indoor lab environment. It is found that the co-polarization has a higher path gain of 45.4 dB in the line-of-sight (LOS) scenario as compared to cross-polarization for the 73 GHz channel. Moreover, average penetration loss of plywood is slightly increased for cross-polarization (8.96 dB/cm) as compared to the co-polarization antenna (8.10 dB/cm) penetration loss. Results show that reflection coefficients, |Γ⊥| are stronger at higher frequencies, and the range of |Γ⊥| varies from 0.38 to 0.83 with impinging direction (i.e., to the surface of drywall) for 20° to 60°, respectively, in the 81 GHz channel.