On the length of uncompletable words in unambiguous automata

A. Boccuto, A. Carpi
{"title":"On the length of uncompletable words in unambiguous automata","authors":"A. Boccuto, A. Carpi","doi":"10.1051/ITA/2019002","DOIUrl":null,"url":null,"abstract":"This paper deals with uncomplete unambiguous automata. In this setting, we investigate the minimal length of uncompletable words. This problem is connected with a well-known conjecture formulated by A. Restivo. We introduce the notion of relatively maximal row for a suitable monoid of matrices. We show that, if M is a monoid of {0, 1}-matrices of dimension n generated by a set S, then there is a matrix of M containing a relatively maximal row which can be expressed as a product of O(n3) matrices of S. As an application, we derive some upper bound to the minimal length of an uncompletable word of an uncomplete unambiguous automaton, in the case that its transformation monoid contains a relatively maximal row which is not maximal. Finally we introduce the maximal row automaton associated with an unambiguous automaton A. It is a deterministic automaton, which is complete if and only if A is. We prove that the minimal length of the uncompletable words of A is polynomially bounded by the number of states of A and the minimal length of the uncompletable words of the associated maximal row automaton.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ITA/2019002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with uncomplete unambiguous automata. In this setting, we investigate the minimal length of uncompletable words. This problem is connected with a well-known conjecture formulated by A. Restivo. We introduce the notion of relatively maximal row for a suitable monoid of matrices. We show that, if M is a monoid of {0, 1}-matrices of dimension n generated by a set S, then there is a matrix of M containing a relatively maximal row which can be expressed as a product of O(n3) matrices of S. As an application, we derive some upper bound to the minimal length of an uncompletable word of an uncomplete unambiguous automaton, in the case that its transformation monoid contains a relatively maximal row which is not maximal. Finally we introduce the maximal row automaton associated with an unambiguous automaton A. It is a deterministic automaton, which is complete if and only if A is. We prove that the minimal length of the uncompletable words of A is polynomially bounded by the number of states of A and the minimal length of the uncompletable words of the associated maximal row automaton.
无二义自动机中不完备词的长度
本文研究不完全无二义自动机。在这种情况下,我们研究了不完整单词的最小长度。这个问题与a .雷斯蒂沃提出的一个著名猜想有关。对于一类合适的矩阵单阵,我们引入了相对极大行的概念。我们表明,如果M是{0,1}的独异点产生的n维矩阵集合S,然后是一个矩阵M的包含一个相对最大的行可以表示为一个产品O (n3)矩阵S作为一个应用程序中,我们得出一些上界的最小长度的uncompletable词不完全明确的自动机,如果转型独异点包含一个相对最大行不是最大的。最后,我们引入了与无二义自动机a相关联的极大行自动机,它是一个确定性自动机,当且仅当a为完全自动机。我们证明了A的不完备字的最小长度多项式地由A的状态数和相关的极大行自动机的不完备字的最小长度所限定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信