Automatic Genre Classification of TV Programmes Using Gaussian Mixture Models and Neural Networks

M. Montagnuolo, A. Messina
{"title":"Automatic Genre Classification of TV Programmes Using Gaussian Mixture Models and Neural Networks","authors":"M. Montagnuolo, A. Messina","doi":"10.1109/DEXA.2007.92","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the problem of automatically identifying the genre of TV programmes. The approach here proposed is based on two foundations: Gaussian mixture models (GMMs) and artificial neural networks (ANNs). Firstly, we use Gaussian mixtures to model the probability distributions of low-level audiovisual features. Secondly, we use the parameters of each mixture model as new feature vectors. Finally, we train a multilayer perceptron (MLP), using GMM parameters as input data, to identify seven television programme genres. We evaluated the effectiveness of the proposed approach testing our system on a large set of data, summing up to more than 100 hours of broadcasted programmes.","PeriodicalId":314834,"journal":{"name":"18th International Workshop on Database and Expert Systems Applications (DEXA 2007)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Workshop on Database and Expert Systems Applications (DEXA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2007.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In this paper we investigate the problem of automatically identifying the genre of TV programmes. The approach here proposed is based on two foundations: Gaussian mixture models (GMMs) and artificial neural networks (ANNs). Firstly, we use Gaussian mixtures to model the probability distributions of low-level audiovisual features. Secondly, we use the parameters of each mixture model as new feature vectors. Finally, we train a multilayer perceptron (MLP), using GMM parameters as input data, to identify seven television programme genres. We evaluated the effectiveness of the proposed approach testing our system on a large set of data, summing up to more than 100 hours of broadcasted programmes.
基于高斯混合模型和神经网络的电视节目类型自动分类
本文研究了电视节目类型的自动识别问题。本文提出的方法基于两个基础:高斯混合模型(GMMs)和人工神经网络(ann)。首先,我们使用高斯混合模型对低阶视听特征的概率分布进行建模。其次,我们使用每个混合模型的参数作为新的特征向量。最后,我们训练了一个多层感知器(MLP),使用GMM参数作为输入数据,来识别七种电视节目类型。我们评估了建议方法的有效性,在大量数据上测试了我们的系统,总计超过100小时的广播节目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信