H. Houtani, Yusuke Komoriyama, S. Matsui, M. Oka, H. Sawada, Yoshiteru Tanaka, T. Waseda
{"title":"Towing Experiment of a Hydro-Structural Container Ship Model in Bow-Quartering Modulated Wave Trains","authors":"H. Houtani, Yusuke Komoriyama, S. Matsui, M. Oka, H. Sawada, Yoshiteru Tanaka, T. Waseda","doi":"10.1115/omae2020-18272","DOIUrl":null,"url":null,"abstract":"\n We experimentally investigated the influence of the geometries of a modulated wave train on the vertical-bending and torsional moments acting on a container ship in bow-quartering sea conditions. We conducted a towing experiment with a hydro-structural container ship model in the Actual Sea Model Basin (ASMB) (80 m deep, 40 m wide, and 4.5 m deep) at the National Maritime Research Institute. The ship model is made of urethane foam and was designed to have similar vertical bending and torsional vibration mode shapes to an actual ship. A modulated wave train was generated in the ASMB by the higher-order spectral-method wave generation (HOSM-WG) method such that the maxim crest appeared at the center of the basin. The ship model was towed in the modulated wave train with a relative heading angle of 120 degrees. A series of tests was performed by varying the encounter timing of the ship model and the maximum crest of the modulated wave train. In the experiment, fiber-Bragg-grating strain gauges successfully measured whipping vibrations of the ship model due to a slamming impact. The experimental results revealed that the rear wave height Hr and the ratio of the rear and front wave heights Hr/Hf were the dominant parameters governing the maximum sagging and torsional moments of a ship in bow-quartering modulated wave trains.","PeriodicalId":427872,"journal":{"name":"Volume 6A: Ocean Engineering","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6A: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We experimentally investigated the influence of the geometries of a modulated wave train on the vertical-bending and torsional moments acting on a container ship in bow-quartering sea conditions. We conducted a towing experiment with a hydro-structural container ship model in the Actual Sea Model Basin (ASMB) (80 m deep, 40 m wide, and 4.5 m deep) at the National Maritime Research Institute. The ship model is made of urethane foam and was designed to have similar vertical bending and torsional vibration mode shapes to an actual ship. A modulated wave train was generated in the ASMB by the higher-order spectral-method wave generation (HOSM-WG) method such that the maxim crest appeared at the center of the basin. The ship model was towed in the modulated wave train with a relative heading angle of 120 degrees. A series of tests was performed by varying the encounter timing of the ship model and the maximum crest of the modulated wave train. In the experiment, fiber-Bragg-grating strain gauges successfully measured whipping vibrations of the ship model due to a slamming impact. The experimental results revealed that the rear wave height Hr and the ratio of the rear and front wave heights Hr/Hf were the dominant parameters governing the maximum sagging and torsional moments of a ship in bow-quartering modulated wave trains.