A Discrete-Continuous Reinforcement Learning Algorithm for Unit Commitment and Dispatch Problem

Ping Zheng, Yuezu Lv
{"title":"A Discrete-Continuous Reinforcement Learning Algorithm for Unit Commitment and Dispatch Problem","authors":"Ping Zheng, Yuezu Lv","doi":"10.1109/ICUS55513.2022.9987086","DOIUrl":null,"url":null,"abstract":"With increasing uncertainties in power systems, reinforcement learning evolves as a promising approach for decision and control problems. This paper focuses on the unit commitment and dispatch problem, with startup and shutdown power trajectories involved, investigating it via reinforcement learning. First, we convert the problem into a Markov decision process, where constraints are tackled by projections and elaborate reward. Then, to cope with discrete commitment actions and continuous power outputs simultaneously, a discrete-continuous reinforcement learning algorithm is proposed by combining deep Q-network with soft actor-critic algorithm. Finally, numerical examples are done, verifying the effectiveness of the presented algorithm.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9987086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With increasing uncertainties in power systems, reinforcement learning evolves as a promising approach for decision and control problems. This paper focuses on the unit commitment and dispatch problem, with startup and shutdown power trajectories involved, investigating it via reinforcement learning. First, we convert the problem into a Markov decision process, where constraints are tackled by projections and elaborate reward. Then, to cope with discrete commitment actions and continuous power outputs simultaneously, a discrete-continuous reinforcement learning algorithm is proposed by combining deep Q-network with soft actor-critic algorithm. Finally, numerical examples are done, verifying the effectiveness of the presented algorithm.
机组调度问题的离散-连续强化学习算法
随着电力系统不确定性的增加,强化学习成为解决决策和控制问题的一种很有前途的方法。本文主要研究机组的投入和调度问题,其中涉及到启动和关闭功率轨迹,通过强化学习对其进行研究。首先,我们将问题转化为马尔可夫决策过程,其中约束由预测和精心设计的奖励来解决。然后,为了同时处理离散承诺行为和连续功率输出,将深度q网络与软行为者评价算法相结合,提出了一种离散-连续强化学习算法。最后通过数值算例验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信