Driver Drowsiness Estimation Based on Hybrid Feature Extraction and Light weighted Dense Convolutional Network

Sharanabasappa, S. Nandyal
{"title":"Driver Drowsiness Estimation Based on Hybrid Feature Extraction and Light weighted Dense Convolutional Network","authors":"Sharanabasappa, S. Nandyal","doi":"10.1109/icdcece53908.2022.9792965","DOIUrl":null,"url":null,"abstract":"Researchers propose a fully automated method of detecting drowsiness using driving images with a focus on fatigue driving detection. Kanade – Lucas – Tomasi - ViolaJones (KLT-ViolaJones) is used to locate feature points and detect faces in the proposed algorithm and feature points are used to extract the region of interest (ROI). In order to determine the status of the eye from the ROI images, Histogram oriented Gradient (HoG) is used. Two parameters with which fatigue can be detected are percentage of eyelid closure over pupil over time (PERCLOS) ratio and Eyes Aspect Ratios (EAR). Experimental results demonstrate that the proposed Light Weighted Dense Convolution Network (Li-DenseNet) can detect drowsiness levels in drivers using the National Tsing Hua University Driver Drowsiness Detection dataset (NTHU-DDD). The proposed algorithm Li-DenseNet outperforms other CNN-based methods, AlexNet, VGG, RNN, and ResNet showing accuracy, sensitivity, specificity, precision and F1-Score rates of 98.44%, 91.5%,92.3%,98.2 and 97.02%, respectively.","PeriodicalId":417643,"journal":{"name":"2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdcece53908.2022.9792965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers propose a fully automated method of detecting drowsiness using driving images with a focus on fatigue driving detection. Kanade – Lucas – Tomasi - ViolaJones (KLT-ViolaJones) is used to locate feature points and detect faces in the proposed algorithm and feature points are used to extract the region of interest (ROI). In order to determine the status of the eye from the ROI images, Histogram oriented Gradient (HoG) is used. Two parameters with which fatigue can be detected are percentage of eyelid closure over pupil over time (PERCLOS) ratio and Eyes Aspect Ratios (EAR). Experimental results demonstrate that the proposed Light Weighted Dense Convolution Network (Li-DenseNet) can detect drowsiness levels in drivers using the National Tsing Hua University Driver Drowsiness Detection dataset (NTHU-DDD). The proposed algorithm Li-DenseNet outperforms other CNN-based methods, AlexNet, VGG, RNN, and ResNet showing accuracy, sensitivity, specificity, precision and F1-Score rates of 98.44%, 91.5%,92.3%,98.2 and 97.02%, respectively.
基于混合特征提取和轻加权密集卷积网络的驾驶员困倦估计
研究人员提出了一种完全自动化的方法,利用驾驶图像来检测困倦,重点是疲劳驾驶检测。在该算法中,使用Kanade - Lucas - Tomasi -ViolaJones (KLT-ViolaJones)来定位特征点和检测人脸,使用特征点来提取感兴趣区域(ROI)。为了从ROI图像中确定眼睛的状态,使用直方图定向梯度(Histogram oriented Gradient, HoG)。可以检测疲劳的两个参数是眼睑闭合与瞳孔随时间的百分比(PERCLOS)比率和眼睛宽高比(EAR)。实验结果表明,本文提出的轻加权密集卷积网络(Li-DenseNet)可以使用国立清华大学驾驶员嗜睡检测数据集(NTHU-DDD)检测驾驶员的嗜睡水平。Li-DenseNet算法的准确率、灵敏度、特异性、精密度和F1-Score率分别为98.44%、91.5%、92.3%、98.2%和97.02%,优于AlexNet、VGG、RNN和ResNet等基于cnn的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信