Combining Local Optimization and Enumeration for QoS-aware Web Service Composition

Lianyong Qi, Ying Tang, Wanchun Dou, Jinjun Chen
{"title":"Combining Local Optimization and Enumeration for QoS-aware Web Service Composition","authors":"Lianyong Qi, Ying Tang, Wanchun Dou, Jinjun Chen","doi":"10.1109/ICWS.2010.62","DOIUrl":null,"url":null,"abstract":"Web service composition, i.e., WSC, has emerged as a promising way to integrate various distributed computing resources for complex application requirements. However, much computation time is needed to determine the optimal composite solution, which embarrasses the popularity of WSC in actual real time applications. In view of this challenge, in this paper, a heuristic service composition method, named LOEM (Local Optimization and Enumeration Method, LOEM), is proposed. It aims at filtering the candidates of each task to a small number of promising ones by local selection, and then enumerates all the composite solutions to pursue a near-to-optimal one. The experiment results demonstrate the feasibility of LOEM in dealing with the WSC problems.","PeriodicalId":170573,"journal":{"name":"2010 IEEE International Conference on Web Services","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Web Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2010.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

Abstract

Web service composition, i.e., WSC, has emerged as a promising way to integrate various distributed computing resources for complex application requirements. However, much computation time is needed to determine the optimal composite solution, which embarrasses the popularity of WSC in actual real time applications. In view of this challenge, in this paper, a heuristic service composition method, named LOEM (Local Optimization and Enumeration Method, LOEM), is proposed. It aims at filtering the candidates of each task to a small number of promising ones by local selection, and then enumerates all the composite solutions to pursue a near-to-optimal one. The experiment results demonstrate the feasibility of LOEM in dealing with the WSC problems.
结合本地优化和枚举的qos感知Web服务组合
Web服务组合(即WSC)已经成为一种很有前途的方法,可以为复杂的应用程序需求集成各种分布式计算资源。然而,确定最优的组合解需要大量的计算时间,这使得WSC在实际的实时应用中难以普及。针对这一挑战,本文提出了一种启发式服务组合方法——局部优化与枚举方法(LOEM)。它的目的是通过局部选择将每个任务的候选对象筛选到少数有希望的候选对象,然后枚举所有的复合解,以追求接近最优的解。实验结果证明了LOEM处理WSC问题的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信