A Multiscale Parametric Background Model for Stationary Foreground Object Detection

Steven Cheng, Xingzhi Luo, S. Bhandarkar
{"title":"A Multiscale Parametric Background Model for Stationary Foreground Object Detection","authors":"Steven Cheng, Xingzhi Luo, S. Bhandarkar","doi":"10.1109/WMVC.2007.1","DOIUrl":null,"url":null,"abstract":"Detection of stationary foreground objects within a dynamic scene is one of the goals of a video surveillance system. A parametric background maintenance and updating scheme, based on a multiple Gaussian mixture model that operates on multiple time scales, is proposed. Each color cluster in the proposed model is assigned a weight which measures the time duration and temporal recurrence frequency of the cluster. Sudden illumination changes are handled by using an adaptive histogram template whereas gradual illumination changes are automatically resolved with the adaptive background model. Stationary foreground objects are detected by maintaining their temporal history in the dynamic scene at multiple time scales. Experimental results show that the proposed scheme performs well in three distinct real-world settings.","PeriodicalId":177842,"journal":{"name":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2007.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Detection of stationary foreground objects within a dynamic scene is one of the goals of a video surveillance system. A parametric background maintenance and updating scheme, based on a multiple Gaussian mixture model that operates on multiple time scales, is proposed. Each color cluster in the proposed model is assigned a weight which measures the time duration and temporal recurrence frequency of the cluster. Sudden illumination changes are handled by using an adaptive histogram template whereas gradual illumination changes are automatically resolved with the adaptive background model. Stationary foreground objects are detected by maintaining their temporal history in the dynamic scene at multiple time scales. Experimental results show that the proposed scheme performs well in three distinct real-world settings.
静止前景目标检测的多尺度参数背景模型
动态场景中静态前景目标的检测是视频监控系统的目标之一。提出了一种基于多时间尺度高斯混合模型的参数化背景维护与更新方案。该模型中的每个颜色聚类都被赋予一个权重,该权重衡量聚类的时间持续时间和时间重复频率。突然的光照变化使用自适应直方图模板处理,而逐渐的光照变化使用自适应背景模型自动解决。静态前景目标是通过在多个时间尺度上保持动态场景中的时间历史来检测的。实验结果表明,该方案在三种不同的现实环境下都具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信