Solutions of Modified Equation of Motion for Laminar Flow across (within) Rigid (Liquid) Sphere and Cylinder and Resolution of Stokes Paradox: Scientific Explanation

S. Sohrab
{"title":"Solutions of Modified Equation of Motion for Laminar Flow across (within) Rigid (Liquid) Sphere and Cylinder and Resolution of Stokes Paradox: Scientific Explanation","authors":"S. Sohrab","doi":"10.9734/bpi/castr/v15/2512f","DOIUrl":null,"url":null,"abstract":"The scale-invariant forms of conservation equations are employed to describe solutions of modified form of equation of motion for the problems of laminar viscous flow across (within) rigid (liquid) sphere and cylinder. Analytical solutions of modified equation of motion in all three regions for both spherical and cylindrical geometry are presented. New solutions for laminar viscous flow across rigid sphere and cylinder are presented with the latter resolving the Stokes paradox for flow across cylinder.","PeriodicalId":348731,"journal":{"name":"Current Approaches in Science and Technology Research Vol. 15","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Approaches in Science and Technology Research Vol. 15","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/bpi/castr/v15/2512f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The scale-invariant forms of conservation equations are employed to describe solutions of modified form of equation of motion for the problems of laminar viscous flow across (within) rigid (liquid) sphere and cylinder. Analytical solutions of modified equation of motion in all three regions for both spherical and cylindrical geometry are presented. New solutions for laminar viscous flow across rigid sphere and cylinder are presented with the latter resolving the Stokes paradox for flow across cylinder.
刚性(液)球与圆柱间层流运动修正方程的解与斯托克斯悖论的解决:科学解释
采用守恒方程的尺度不变形式描述了刚性(液体)球和圆柱间层流粘性流动问题的修正运动方程的解。给出了球面和圆柱几何三种区域的修正运动方程的解析解。提出了刚性球与圆柱间层流粘性流动的新解,其中圆柱间层流粘性流动解决了斯托克斯悖论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信