{"title":"Tunable graphene nanomesh semiconductor: Design, fabrication, and characterization","authors":"H. Al-Mumen, F. Rao, Lixin Dong, Wen Li","doi":"10.1109/NEMS.2013.6559920","DOIUrl":null,"url":null,"abstract":"This paper reported a technique for tuning graphene semiconductor properties by introducing nanoholes into single- and few-layer graphene films. A simple nanofabrication technique has been demonstrated for making periodic nanoholes on pristine graphene in a mask-free and time-efficient manner via direct e-beam writing which was done by simply scanning the graphene area that is covered with EBL resist and then etching the scanned area by oxygen plasma. Parameters of e-beam lithography (EBL) (acceleration voltage, beam current, EBL resist thickness, and scanning area) were fine-tuned to optimize the dimensions of the nanomesh. Finally, Graphene field effect transistors were fabricated and characterized experimentally.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reported a technique for tuning graphene semiconductor properties by introducing nanoholes into single- and few-layer graphene films. A simple nanofabrication technique has been demonstrated for making periodic nanoholes on pristine graphene in a mask-free and time-efficient manner via direct e-beam writing which was done by simply scanning the graphene area that is covered with EBL resist and then etching the scanned area by oxygen plasma. Parameters of e-beam lithography (EBL) (acceleration voltage, beam current, EBL resist thickness, and scanning area) were fine-tuned to optimize the dimensions of the nanomesh. Finally, Graphene field effect transistors were fabricated and characterized experimentally.