{"title":"An E-Band Gate-Pump SSB Mixer for Vital Signs Doppler Radar","authors":"Yu-Teng Chang, Hsin-Chia Lu","doi":"10.1109/RFIT.2018.8524124","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a CMOS gate-pump single side band (SSB) mixer at E-band. To improve conversion gain and efficiency, the transistors M1-M4 are biased at near class B region with the LO signal. We also carefully select LO power to get optimum conversion gain. Compared with traditional gate-pump mixer, the LO of this mixer is applied to the gate and the IF is applied to the source. This approach can assure that transistors are biased in class B region and also improve linearity. The peak conversion gain is −11.98 at 72 GHz. The measured LO-to-RF isolation is better than 35 dB and IRR is better than 29 dBc from 68 - 80 GHz. To our best knowledge, this SSB mixer has the highest IRR and good conversion gain at E-band among passive SSB mixers.","PeriodicalId":297122,"journal":{"name":"2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT.2018.8524124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we propose a CMOS gate-pump single side band (SSB) mixer at E-band. To improve conversion gain and efficiency, the transistors M1-M4 are biased at near class B region with the LO signal. We also carefully select LO power to get optimum conversion gain. Compared with traditional gate-pump mixer, the LO of this mixer is applied to the gate and the IF is applied to the source. This approach can assure that transistors are biased in class B region and also improve linearity. The peak conversion gain is −11.98 at 72 GHz. The measured LO-to-RF isolation is better than 35 dB and IRR is better than 29 dBc from 68 - 80 GHz. To our best knowledge, this SSB mixer has the highest IRR and good conversion gain at E-band among passive SSB mixers.