Development of Relative Rigidity Measure for Shallow Foundations

S. Tabsh, Magdi Elemam
{"title":"Development of Relative Rigidity Measure for Shallow Foundations","authors":"S. Tabsh, Magdi Elemam","doi":"10.11159/ijci.2023.003","DOIUrl":null,"url":null,"abstract":"- This study investigates the influence of the structure-to-soil relative rigidity on the structural behaviour of shallow foundation. The effect of change in the material and geometrical properties on the critical soil pressure intensity, bending moment and shear force of spread footings and rafts is investigated numerically using the finite element method. The parameters that are addressed in the analysis include the foundation thickness, soil modulus of subgrade reaction, concrete modulus of elasticity and plan geometry of the foundation. The foundation is modelled by thick shell elements while the soil by Winkler elastic springs. Findings of the study showed that the most important variables that affect the structural response of shallow foundations are the thickness and plan dimensions of the foundation, and to a lesser extent the soil modulus of subgrade reaction and concrete modulus of elasticity. A relative foundation-to-soil rigidity measure that can quantitatively predict the degree of stiffness of a shallow foundation was developed. The rigidity measure can help engineers in forecasting whether the traditional rigid foundation approach can be safely used to analyse a given spread footing or raft.","PeriodicalId":371508,"journal":{"name":"International Journal of Civil Infrastructure","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Civil Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/ijci.2023.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

- This study investigates the influence of the structure-to-soil relative rigidity on the structural behaviour of shallow foundation. The effect of change in the material and geometrical properties on the critical soil pressure intensity, bending moment and shear force of spread footings and rafts is investigated numerically using the finite element method. The parameters that are addressed in the analysis include the foundation thickness, soil modulus of subgrade reaction, concrete modulus of elasticity and plan geometry of the foundation. The foundation is modelled by thick shell elements while the soil by Winkler elastic springs. Findings of the study showed that the most important variables that affect the structural response of shallow foundations are the thickness and plan dimensions of the foundation, and to a lesser extent the soil modulus of subgrade reaction and concrete modulus of elasticity. A relative foundation-to-soil rigidity measure that can quantitatively predict the degree of stiffness of a shallow foundation was developed. The rigidity measure can help engineers in forecasting whether the traditional rigid foundation approach can be safely used to analyse a given spread footing or raft.
浅基础相对刚度测量方法的发展
-本研究探讨结构-土相对刚度对浅基础结构性能的影响。采用有限元方法,研究了材料和几何特性变化对摊开式基础和筏板临界土压强度、弯矩和剪力的影响。分析中涉及的参数包括地基厚度、地基反力土模量、混凝土弹性模量和地基平面几何形状。地基采用厚壳单元,土体采用温克勒弹性弹簧。研究结果表明,影响浅基础结构响应的最重要变量是基础厚度和平面尺寸,其次是路基土反力模量和混凝土弹性模量。提出了一种能够定量预测浅基础刚度的地基-土相对刚度测度方法。刚度测量可以帮助工程师预测传统的刚性基础方法是否可以安全地用于分析给定的扩展基础或筏板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信