Efficiency Improvement of GaN Dual-Active-Bridge DC-DC Converter with a Three-level Active Gate Driver

Jinwoo Kim, Kwon-Hyeon Kim, Yujin Shin, Seongmi Park, Jinhyuk Heo, Younghoon Cho
{"title":"Efficiency Improvement of GaN Dual-Active-Bridge DC-DC Converter with a Three-level Active Gate Driver","authors":"Jinwoo Kim, Kwon-Hyeon Kim, Yujin Shin, Seongmi Park, Jinhyuk Heo, Younghoon Cho","doi":"10.23919/ICPE2023-ECCEAsia54778.2023.10213927","DOIUrl":null,"url":null,"abstract":"Gallium nitride (GaN) high electron mobility transistor (HEMT) is used in various high frequency applications, due to its extremely fast switching speed and low conduction resistance. However, GaN HEMT has poor reverse conduction characteristics under the turn-off condition which causes a dead-time loss. Therefore, as the system switching frequency increases, the effect of the dead-time loss becomes significant. Prior research tried to optimize the dead-time to handle the loss, but these methods need complex mathematical models and real-time calculations according to the load current. To overcome these complex model and calculations, this paper proposes an active gate driver (AGD) to reduce the dead-time loss without any real-time calculation. The circuit design of the proposed AGD is described and the operation sequence is verified with experiment. And the proposed AGD is applied in GaN-based dual active bridge converter to prove the effectiveness of the proposed method. By using the proposed method, the experiment results show that the system efficiency is increased in all load condition.","PeriodicalId":151155,"journal":{"name":"2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023 - ECCE Asia)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023 - ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICPE2023-ECCEAsia54778.2023.10213927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gallium nitride (GaN) high electron mobility transistor (HEMT) is used in various high frequency applications, due to its extremely fast switching speed and low conduction resistance. However, GaN HEMT has poor reverse conduction characteristics under the turn-off condition which causes a dead-time loss. Therefore, as the system switching frequency increases, the effect of the dead-time loss becomes significant. Prior research tried to optimize the dead-time to handle the loss, but these methods need complex mathematical models and real-time calculations according to the load current. To overcome these complex model and calculations, this paper proposes an active gate driver (AGD) to reduce the dead-time loss without any real-time calculation. The circuit design of the proposed AGD is described and the operation sequence is verified with experiment. And the proposed AGD is applied in GaN-based dual active bridge converter to prove the effectiveness of the proposed method. By using the proposed method, the experiment results show that the system efficiency is increased in all load condition.
利用三电平有源栅极驱动器提高GaN双有源桥式DC-DC变换器的效率
氮化镓(GaN)高电子迁移率晶体管(HEMT)由于其极快的开关速度和极低的传导电阻,被用于各种高频应用。然而,GaN HEMT在关断条件下具有较差的反向导通特性,导致死区时间损失。因此,随着系统开关频率的增加,死区损耗的影响变得显著。以往的研究试图通过优化死区时间来处理损耗,但这些方法需要复杂的数学模型和根据负载电流进行实时计算。为了克服这些复杂的模型和计算,本文提出了一种有源栅极驱动器(AGD)来减少死区时间损失,而无需任何实时计算。介绍了所提出的AGD的电路设计,并通过实验验证了其工作顺序。并将该方法应用于基于gan的双有源桥式变换器中,验证了该方法的有效性。实验结果表明,该方法在各种负载条件下均能提高系统效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信