Solving process engineering problems using artificial neural networks

M. Willis, C. Massimo, G. Montague, M. Tham, A. Morris
{"title":"Solving process engineering problems using artificial neural networks","authors":"M. Willis, C. Massimo, G. Montague, M. Tham, A. Morris","doi":"10.1049/PBCE044E_CH7","DOIUrl":null,"url":null,"abstract":"Artificial neural networks are made up of highly inter-connected layers of simple 'neuron' like nodes. The neurons act as nonlinear processing elements within the network. An attractive property of artificial neural networks is that given the appropriate network topology, they are capable of characterising nonlinear functional relationships. Furthermore, the structure of the resulting neural network based process model may be considered generic, in the sense that little prior process knowledge is required in its determination. The methodology therefore provides a cost efficient and reliable process modelling technique.","PeriodicalId":290911,"journal":{"name":"IEE control engineering series","volume":"726 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEE control engineering series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/PBCE044E_CH7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Artificial neural networks are made up of highly inter-connected layers of simple 'neuron' like nodes. The neurons act as nonlinear processing elements within the network. An attractive property of artificial neural networks is that given the appropriate network topology, they are capable of characterising nonlinear functional relationships. Furthermore, the structure of the resulting neural network based process model may be considered generic, in the sense that little prior process knowledge is required in its determination. The methodology therefore provides a cost efficient and reliable process modelling technique.
利用人工神经网络解决工艺工程问题
人工神经网络是由高度互连的简单“神经元”节点层组成的。神经元在网络中充当非线性处理元素。人工神经网络的一个吸引人的特性是,给定适当的网络拓扑结构,它们能够表征非线性函数关系。此外,由此产生的基于神经网络的过程模型的结构可以被认为是通用的,因为在确定过程中需要很少的先验过程知识。因此,该方法提供了一种成本效益高且可靠的过程建模技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信