A Probabilistic Hierarchical Approach for Pattern Discovery in Collaborative Filtering Data (Extended Abstract)

Nicola Barbieri, G. Manco, E. Ritacco
{"title":"A Probabilistic Hierarchical Approach for Pattern Discovery in Collaborative Filtering Data (Extended Abstract)","authors":"Nicola Barbieri, G. Manco, E. Ritacco","doi":"10.1137/1.9781611972818.54","DOIUrl":null,"url":null,"abstract":"This paper presents a hierarchical probabilistic approach to collaborative filtering which allows the discovery and analysis of both global patterns (i.e., tendency of some products of being ‘universally appreciated’) and local patterns ( tendency of users within a community to express a common preference on the same group of items). We reformulate the collaborative filtering approach as a clustering problem in a high-dimensional setting, and propose a probabilistic approach to model the data. The core of our approach is a co-clustering strategy, arranged in a hierarchical fashion: first, user communities are discovered, and then the information provided by each user community is used to discover topics, grouping items into categories. The resulting probabilistic framework can be used for detecting interesting relationships between users and items within user communities. The experimental evaluation shows that the proposed model achieves a competitive prediction accuracy with respect to the state-of-art collaborative filtering approaches.","PeriodicalId":312822,"journal":{"name":"Sistemi Evoluti per Basi di Dati","volume":"725 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sistemi Evoluti per Basi di Dati","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972818.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a hierarchical probabilistic approach to collaborative filtering which allows the discovery and analysis of both global patterns (i.e., tendency of some products of being ‘universally appreciated’) and local patterns ( tendency of users within a community to express a common preference on the same group of items). We reformulate the collaborative filtering approach as a clustering problem in a high-dimensional setting, and propose a probabilistic approach to model the data. The core of our approach is a co-clustering strategy, arranged in a hierarchical fashion: first, user communities are discovered, and then the information provided by each user community is used to discover topics, grouping items into categories. The resulting probabilistic framework can be used for detecting interesting relationships between users and items within user communities. The experimental evaluation shows that the proposed model achieves a competitive prediction accuracy with respect to the state-of-art collaborative filtering approaches.
一种基于概率层次的协同过滤数据模式发现方法(扩展摘要)
本文提出了一种分层概率协同过滤方法,它允许发现和分析全局模式(即,某些产品被“普遍欣赏”的趋势)和局部模式(社区内用户对同一组产品表达共同偏好的趋势)。我们将协同过滤方法重新表述为高维环境下的聚类问题,并提出了一种概率方法来对数据建模。我们方法的核心是以分层方式安排的共聚类策略:首先,发现用户社区,然后使用每个用户社区提供的信息来发现主题,将项目分组到类别中。由此产生的概率框架可用于检测用户社区内用户和项目之间的有趣关系。实验结果表明,与现有的协同过滤方法相比,该模型具有较好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信