Nuclear Fusion Simulation Code Optimization on GPU Clusters

N. Fujita, Hideo Nuga, T. Boku, Y. Idomura
{"title":"Nuclear Fusion Simulation Code Optimization on GPU Clusters","authors":"N. Fujita, Hideo Nuga, T. Boku, Y. Idomura","doi":"10.1109/ICPADS.2013.65","DOIUrl":null,"url":null,"abstract":"GT5D is a nuclear fusion simulation program which aims to analyze the turbulence phenomena in tokamak plasma. In this research, we optimize it for GPU clusters with multiple GPUs on a node. Based on the profile result of GT5D on a CPU node, we decide to offload the whole of the time development part of the program to GPUs except MPI communication. We achieved 3.37 times faster performance in maximum in function level evaluation, and 2.03 times faster performance in total than the case of CPU-only execution, both in the measurement on high density GPU cluster HA-PACS where each computation node consists of four NVIDIA M2090 GPUs and two Intel Xeon E5-2670 (Sandy Bridge) to provide 16 cores in total. These performance improvements on single GPU corresponds to four CPU cores, not compared with a single CPU core. It includes 53% performance gain with overlapping the communication between MPI processes with GPU calculation.","PeriodicalId":160979,"journal":{"name":"2013 International Conference on Parallel and Distributed Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2013.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

GT5D is a nuclear fusion simulation program which aims to analyze the turbulence phenomena in tokamak plasma. In this research, we optimize it for GPU clusters with multiple GPUs on a node. Based on the profile result of GT5D on a CPU node, we decide to offload the whole of the time development part of the program to GPUs except MPI communication. We achieved 3.37 times faster performance in maximum in function level evaluation, and 2.03 times faster performance in total than the case of CPU-only execution, both in the measurement on high density GPU cluster HA-PACS where each computation node consists of four NVIDIA M2090 GPUs and two Intel Xeon E5-2670 (Sandy Bridge) to provide 16 cores in total. These performance improvements on single GPU corresponds to four CPU cores, not compared with a single CPU core. It includes 53% performance gain with overlapping the communication between MPI processes with GPU calculation.
GPU集群上的核聚变仿真代码优化
GT5D是一个旨在分析托卡马克等离子体湍流现象的核聚变模拟程序。在本研究中,我们针对一个节点上有多个GPU的GPU集群进行了优化。根据GT5D在CPU节点上的配置结果,我们决定将程序的时间开发部分除MPI通信外全部卸载到gpu上。在高密度GPU集群HA-PACS上,每个计算节点由4个NVIDIA M2090 GPU和2个Intel Xeon E5-2670 (Sandy Bridge)组成,总共提供16个内核,在功能级评估中,我们实现了3.37倍的最大性能提升,2.03倍的总性能提升。单个GPU上的这些性能改进对应于四个CPU核心,而不是与单个CPU核心相比。由于MPI进程与GPU计算之间的通信重叠,它的性能提高了53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信