Epidemic Threshold and Lifetime Distribution for Information Diffusion on Simultaneously Growing Networks

Emily M. Fischer, Souvik Ghosh, G. Samorodnitsky
{"title":"Epidemic Threshold and Lifetime Distribution for Information Diffusion on Simultaneously Growing Networks","authors":"Emily M. Fischer, Souvik Ghosh, G. Samorodnitsky","doi":"10.1145/3341161.3342891","DOIUrl":null,"url":null,"abstract":"We study information diffusion modeled by epidemic models on a class of growing preferential attachment networks. We show through a thorough simulation study that there is a fundamental difference in the nature of the epidemic process on growing temporal networks in comparison to the same process on static networks. The empirical distribution of the epidemic lifetime on growing networks has a considerably heavier, and possibly infinite, tail. Furthermore, the notion of the epidemic threshold has only minor significance in this context, since network growth reduces the critical value of the corresponding static graph.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3342891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We study information diffusion modeled by epidemic models on a class of growing preferential attachment networks. We show through a thorough simulation study that there is a fundamental difference in the nature of the epidemic process on growing temporal networks in comparison to the same process on static networks. The empirical distribution of the epidemic lifetime on growing networks has a considerably heavier, and possibly infinite, tail. Furthermore, the notion of the epidemic threshold has only minor significance in this context, since network growth reduces the critical value of the corresponding static graph.
同步增长网络上信息扩散的流行阈值和寿命分布
我们研究了一类不断增长的优先依恋网络上用流行病模型建模的信息扩散。我们通过全面的模拟研究表明,与静态网络上的相同过程相比,增长时间网络上的流行过程的性质存在根本差异。在不断增长的网络上,流行病寿命的经验分布有一个相当重的、可能无限的尾巴。此外,流行阈值的概念在这种情况下意义不大,因为网络增长降低了相应静态图的临界值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信