Gylfi Þór Guðmundsson, L. Amsaleg, B. Jónsson, M. Franklin
{"title":"Towards Engineering a Web-Scale Multimedia Service: A Case Study Using Spark","authors":"Gylfi Þór Guðmundsson, L. Amsaleg, B. Jónsson, M. Franklin","doi":"10.1145/3083187.3083200","DOIUrl":null,"url":null,"abstract":"Computing power has now become abundant with multi-core machines, grids and clouds, but it remains a challenge to harness the available power and move towards gracefully handling web-scale datasets. Several researchers have used automatically distributed computing frameworks, notably Hadoop and Spark, for processing multimedia material, but mostly using small collections on small clusters. In this paper, we describe the engineering process for a prototype of a (near) web-scale multimedia service using the Spark framework running on the AWS cloud service. We present experimental results using up to 43 billion SIFT feature vectors from the public YFCC 100M collection, making this the largest high-dimensional feature vector collection reported in the literature. The design of the prototype and performance results demonstrate both the flexibility and scalability of the Spark framework for implementing multimedia services.","PeriodicalId":123321,"journal":{"name":"Proceedings of the 8th ACM on Multimedia Systems Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM on Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3083187.3083200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Computing power has now become abundant with multi-core machines, grids and clouds, but it remains a challenge to harness the available power and move towards gracefully handling web-scale datasets. Several researchers have used automatically distributed computing frameworks, notably Hadoop and Spark, for processing multimedia material, but mostly using small collections on small clusters. In this paper, we describe the engineering process for a prototype of a (near) web-scale multimedia service using the Spark framework running on the AWS cloud service. We present experimental results using up to 43 billion SIFT feature vectors from the public YFCC 100M collection, making this the largest high-dimensional feature vector collection reported in the literature. The design of the prototype and performance results demonstrate both the flexibility and scalability of the Spark framework for implementing multimedia services.