{"title":"Numerical Study of Natural Convection Heat Transfer from a Horizontal Plate using Solid, Hollow and Hollow/Perforated Pin Fins","authors":"A. Mousa","doi":"10.21608/njbs.2021.202757","DOIUrl":null,"url":null,"abstract":"Natural convection heat transfer from circular solid, hollow and hollow/perforated pin fin arrays with different geometry is studied numerically using ANSYS 16.0. The geometric dependence of heat transfer from heat sinks of solid, hollow and hollow/perforated fins with staggered arrangement, involved on a fixed area heated base plate is discussed. To solve governing equations (mass, momentum and energy), a SIMPLE code is developed using control volume approach. The second order upwind technique is used. The results were performed for a range of Rayleigh number, 9.3×10> Ra> 1.63×10. It presented that the performance of the solid fin heat sink is higher than the hollow ones and Nu for the hollow/perforated fin heat sink is higher than that for the solid fin heat sink. It is also investigated that hollow/perforated fin array with inner-to-outer diameter ratio (Di/Do=1/2) and perforation diameter (dp=6 mm) is the best sample giving the maximum performance and less amount of weight compared to the corresponding solid ones.","PeriodicalId":210317,"journal":{"name":"Nile Journal of Basic Science","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nile Journal of Basic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/njbs.2021.202757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Natural convection heat transfer from circular solid, hollow and hollow/perforated pin fin arrays with different geometry is studied numerically using ANSYS 16.0. The geometric dependence of heat transfer from heat sinks of solid, hollow and hollow/perforated fins with staggered arrangement, involved on a fixed area heated base plate is discussed. To solve governing equations (mass, momentum and energy), a SIMPLE code is developed using control volume approach. The second order upwind technique is used. The results were performed for a range of Rayleigh number, 9.3×10> Ra> 1.63×10. It presented that the performance of the solid fin heat sink is higher than the hollow ones and Nu for the hollow/perforated fin heat sink is higher than that for the solid fin heat sink. It is also investigated that hollow/perforated fin array with inner-to-outer diameter ratio (Di/Do=1/2) and perforation diameter (dp=6 mm) is the best sample giving the maximum performance and less amount of weight compared to the corresponding solid ones.