Monthly sunspot numbers forecast with artificial neural network combined with dynamo model: Comparison with modern methods

N. Safiullin, S. Porshnev, N. Kleeorin
{"title":"Monthly sunspot numbers forecast with artificial neural network combined with dynamo model: Comparison with modern methods","authors":"N. Safiullin, S. Porshnev, N. Kleeorin","doi":"10.1109/USBEREIT.2018.8384584","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel method for a monthly forecast of the total sunspot number time series, based on the combination of a dynamo model with an artificial neural network. The nonlinear autoregressive scheme is used with exo-genous input, consisting of two parts: the prior real observations and the corresponding model estimations at the same time-point. The results of the monthly forecast have been compared to all the modern sunspot forecasting methods, including data assimilation techniques, showing the higher accuracy of the proposed method when using one-step prediction and monthly corrections.","PeriodicalId":176222,"journal":{"name":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USBEREIT.2018.8384584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we propose a novel method for a monthly forecast of the total sunspot number time series, based on the combination of a dynamo model with an artificial neural network. The nonlinear autoregressive scheme is used with exo-genous input, consisting of two parts: the prior real observations and the corresponding model estimations at the same time-point. The results of the monthly forecast have been compared to all the modern sunspot forecasting methods, including data assimilation techniques, showing the higher accuracy of the proposed method when using one-step prediction and monthly corrections.
结合发电机模型的人工神经网络预报月黑子数:与现代方法的比较
本文提出了一种基于发电机模型和人工神经网络相结合的月度太阳黑子总数时间序列预报新方法。采用外生输入的非线性自回归方案,该方案由两部分组成:先前的实际观测值和相应的模型在同一时间点的估计。将月预报结果与所有现代太阳黑子预报方法(包括数据同化技术)进行了比较,结果表明,采用一步预报和月校正的方法具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信