Multimedia edges: finding hierarchy in all dimensions

M. Slaney, D. Ponceleón, James Kaufman
{"title":"Multimedia edges: finding hierarchy in all dimensions","authors":"M. Slaney, D. Ponceleón, James Kaufman","doi":"10.1145/500141.500149","DOIUrl":null,"url":null,"abstract":"This paper describes a new unified representation for the informa¿tion in a video. We reduce the dimensionality of the signal with either a singular-value decomposition (on the semantic and image data) or mel-frequency cepstral coefficients (on the audio data) and then concatenate the vectors to form a multi-dimensional represen¿tation of the video. Using scale-space techniques we find large jumps in the video's path, which we call edges. We use these tech¿niques to analyze the temporal properties of the audio and image data in a video. This analysis creates a hierarchical segmentation of the video, or a table-of-contents, from the audio, semantic and image data.","PeriodicalId":416848,"journal":{"name":"MULTIMEDIA '01","volume":"12 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '01","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/500141.500149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper describes a new unified representation for the informa¿tion in a video. We reduce the dimensionality of the signal with either a singular-value decomposition (on the semantic and image data) or mel-frequency cepstral coefficients (on the audio data) and then concatenate the vectors to form a multi-dimensional represen¿tation of the video. Using scale-space techniques we find large jumps in the video's path, which we call edges. We use these tech¿niques to analyze the temporal properties of the audio and image data in a video. This analysis creates a hierarchical segmentation of the video, or a table-of-contents, from the audio, semantic and image data.
多媒体边:在所有维度中寻找层次结构
本文描述了视频信息的一种新的统一表示。我们通过奇值分解(在语义和图像数据上)或梅尔频率倒谱系数(在音频数据上)来降低信号的维数,然后将向量连接起来,形成视频的多维表示。使用比例空间技术,我们在视频的路径中找到了大的跳跃,我们称之为边缘。我们使用这些技术来分析视频中音频和图像数据的时间属性。这种分析从音频、语义和图像数据中创建了视频的分层分割或目录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信