Balanced Dense Polynomial Multiplication on Multi-Cores

M. M. Maza, Yuzhen Xie
{"title":"Balanced Dense Polynomial Multiplication on Multi-Cores","authors":"M. M. Maza, Yuzhen Xie","doi":"10.1145/1823931.1823942","DOIUrl":null,"url":null,"abstract":"In symbolic computation, polynomial multiplication is a fundamental operation akin to matrix multiplication in numerical computation. We present efficient implementation strategies for FFT-based dense polynomial multiplication targeting multi-cores. We show that {\\it balanced input data} can maximize parallel speedup and minimize cache complexity for bivariate multiplication. However, unbalanced input data, which are common in symbolic computation, are challenging. We provide efficient techniques, what we call {\\it contraction} and {\\it extension}, to reduce multivariate (and univariate) multiplication to {\\it balanced bivariate multiplication}. Our implementation in {\\tt Cilk++} demonstrates good speed upon multi-cores.","PeriodicalId":312929,"journal":{"name":"2009 International Conference on Parallel and Distributed Computing, Applications and Technologies","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Parallel and Distributed Computing, Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1823931.1823942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In symbolic computation, polynomial multiplication is a fundamental operation akin to matrix multiplication in numerical computation. We present efficient implementation strategies for FFT-based dense polynomial multiplication targeting multi-cores. We show that {\it balanced input data} can maximize parallel speedup and minimize cache complexity for bivariate multiplication. However, unbalanced input data, which are common in symbolic computation, are challenging. We provide efficient techniques, what we call {\it contraction} and {\it extension}, to reduce multivariate (and univariate) multiplication to {\it balanced bivariate multiplication}. Our implementation in {\tt Cilk++} demonstrates good speed upon multi-cores.
多核平衡密集多项式乘法
在符号计算中,多项式乘法是一种基本运算,类似于数值计算中的矩阵乘法。提出了针对多核的基于fft的密集多项式乘法的有效实现策略。我们证明了{\it平衡输入数据}可以最大化并行加速并最小化二元乘法的缓存复杂性。然而,符号计算中常见的不平衡输入数据是一个挑战。我们提供了有效的技术,我们称之为{\it收缩}和{\it扩展},将多元(和单变量)乘法减少到{\it平衡二元乘法}。我们在{\tt cilk++}中的实现在多核上展示了良好的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信