A Token-pair Framework for Information Extraction from Dialog Transcripts in SereTOD Challenge

Chenyue Wang, Xiangxing Kong, Mengzuo Huang, Feng Li, Jian Xing, Weidong Zhang, Wuhe Zou
{"title":"A Token-pair Framework for Information Extraction from Dialog Transcripts in SereTOD Challenge","authors":"Chenyue Wang, Xiangxing Kong, Mengzuo Huang, Feng Li, Jian Xing, Weidong Zhang, Wuhe Zou","doi":"10.18653/v1/2022.seretod-1.3","DOIUrl":null,"url":null,"abstract":"This paper describes our solution for Sere- TOD Challenge Track 1: Information extraction from dialog transcripts. We propose a token-pair framework to simultaneously identify entity and value mentions and link them into corresponding triples. As entity mentions are usually coreferent, we adopt a baseline model for coreference resolution. We exploit both annotated transcripts and unsupervised dialogs for training. With model ensemble and post-processing strategies, our system significantly outperforms the baseline solution and ranks first in triple f1 and third in entity f1.","PeriodicalId":171614,"journal":{"name":"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.seretod-1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes our solution for Sere- TOD Challenge Track 1: Information extraction from dialog transcripts. We propose a token-pair framework to simultaneously identify entity and value mentions and link them into corresponding triples. As entity mentions are usually coreferent, we adopt a baseline model for coreference resolution. We exploit both annotated transcripts and unsupervised dialogs for training. With model ensemble and post-processing strategies, our system significantly outperforms the baseline solution and ranks first in triple f1 and third in entity f1.
从对话文本中提取信息的令牌对框架
本文描述了我们对Sere- TOD挑战的解决方案Track 1:从对话文本中提取信息。我们提出了一个令牌对框架来同时识别实体和价值提及,并将它们链接到相应的三元组中。由于实体提及通常是共指的,我们采用基线模型进行共指解析。我们利用带注释的文本和无监督的对话进行培训。通过模型集成和后处理策略,我们的系统显著优于基线解决方案,在三重f1中排名第一,在实体f1中排名第三。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信