Mammogram JPEG quantisation matrix optimisation for PACS

D. Campbell, A. Maeder, F. Tapia-Vergara
{"title":"Mammogram JPEG quantisation matrix optimisation for PACS","authors":"D. Campbell, A. Maeder, F. Tapia-Vergara","doi":"10.1109/ANZIIS.2001.974038","DOIUrl":null,"url":null,"abstract":"Clinical procedures and legal requirements increasingly demand greater performance in JPEG compression of digitised grayscale medical images without loss of visual fidelity or without exceeding a bounded error metric. Current JPEG common practice uses a default general-purpose luminance quantisation matrix. As an initial investigation into defining more suitable quantisation matrices for different medical image modalities, a new candidate matrix has been derived for mammograms. For a given SNR, the new quantisation matrix achieves a relative compression ratio performance improvement of approximately 22% for a quality factor of 95% and 15% for a quality factor of 85%. This study paves the way for a computationally intelligent approach to optimising the quantisation matrix for each medical image modality in both batch mode and adaptively on an image-by-image basis.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Clinical procedures and legal requirements increasingly demand greater performance in JPEG compression of digitised grayscale medical images without loss of visual fidelity or without exceeding a bounded error metric. Current JPEG common practice uses a default general-purpose luminance quantisation matrix. As an initial investigation into defining more suitable quantisation matrices for different medical image modalities, a new candidate matrix has been derived for mammograms. For a given SNR, the new quantisation matrix achieves a relative compression ratio performance improvement of approximately 22% for a quality factor of 95% and 15% for a quality factor of 85%. This study paves the way for a computationally intelligent approach to optimising the quantisation matrix for each medical image modality in both batch mode and adaptively on an image-by-image basis.
用于PACS的乳房x光图像JPEG量化矩阵优化
临床程序和法律要求越来越多地要求数字化灰度医学图像的JPEG压缩性能提高,同时不损失视觉保真度或不超过有界误差度量。当前JPEG常用的做法是使用默认的通用亮度量化矩阵。作为对定义更适合不同医学图像模式的量化矩阵的初步调查,一个新的候选矩阵已被导出用于乳房x光检查。对于给定的信噪比,新的量化矩阵在质量因子为95%时实现了大约22%的相对压缩比性能改进,在质量因子为85%时实现了15%的相对压缩比性能改进。本研究为一种计算智能方法铺平了道路,该方法可以在批处理模式和自适应的基础上对每个医学图像模式优化量化矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信