Preserving privacy for moving objects data mining

S. Ho
{"title":"Preserving privacy for moving objects data mining","authors":"S. Ho","doi":"10.1109/ISI.2012.6284198","DOIUrl":null,"url":null,"abstract":"The prevalence of mobile devices with geopositioning capability has resulted in the rapid growth in the amount of moving object trajectories. These data have been collected and analyzed for both commercial (e.g., recommendation system) and security (e.g. surveillance and monitoring system) purposes. One needs to ensure the privacy of these raw trajectory data and the derived knowledge by not disclosing or releasing them to adversary. In this paper, we propose a practical implementation of a (ε; δ)-differentially private mechanism for moving objects data mining; in particular, we apply it to the frequent location pattern mining algorithm. Experimental results on the real-world GeoLife dataset are used to compare the performance of the (ε; δ)-differential privacy mechanism with the standard ε-differential privacy mechanism.","PeriodicalId":199734,"journal":{"name":"2012 IEEE International Conference on Intelligence and Security Informatics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2012.6284198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The prevalence of mobile devices with geopositioning capability has resulted in the rapid growth in the amount of moving object trajectories. These data have been collected and analyzed for both commercial (e.g., recommendation system) and security (e.g. surveillance and monitoring system) purposes. One needs to ensure the privacy of these raw trajectory data and the derived knowledge by not disclosing or releasing them to adversary. In this paper, we propose a practical implementation of a (ε; δ)-differentially private mechanism for moving objects data mining; in particular, we apply it to the frequent location pattern mining algorithm. Experimental results on the real-world GeoLife dataset are used to compare the performance of the (ε; δ)-differential privacy mechanism with the standard ε-differential privacy mechanism.
为移动对象数据挖掘保护隐私
具有地理定位功能的移动设备的普及导致了移动物体轨迹数量的快速增长。收集和分析这些数据是为了商业(例如,推荐系统)和安全(例如,监视和监测系统)目的。我们需要确保这些原始轨迹数据和衍生知识的隐私性,不将其泄露或释放给对手。在本文中,我们提出了a (ε;δ)-移动对象数据挖掘的差分私有机制;特别地,我们将其应用于频繁位置模式挖掘算法。在真实的GeoLife数据集上使用实验结果来比较(ε;δ)差分隐私机制与标准ε-差分隐私机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信