{"title":"One, Five, and Ten-Shot-Based Meta-Learning for Computationally Efficient Head Pose Estimation","authors":"Manoj Joshi, D. Pant, J. Heikkonen, R. Kanth","doi":"10.4018/ijertcs.316877","DOIUrl":null,"url":null,"abstract":"Many real-world applications rely on head pose estimation. The performance of head pose estimation has significantly improved with techniques like convolutional neural networks (CNN). However, CNN requires a large amount of data for training. This article presents a new framework for head pose estimation using computationally efficient first-order model-agnostic meta-learning (FO-MAML)-based method and compares the performance with existing MAML-based approaches. Experiments using one-shot, five-shot, and ten-shot settings are done using MAML and FO-MAML. A mean average error (MAEavg) of 7.72, 6.30, and 5.32 has been achieved in predicting head pose using MAML for one-, five-, and ten-shot settings, respectively. Similarly, MAEavg of 8.33, 6.84, and 6.23 has been achieved in predicting head pose using FO-MAML for one-, five-, and ten-shot settings, respectively. The computational complexity of an outer-loop update in MAML is found to be O(n2) whereas for FO-MAML it is O(n).","PeriodicalId":359507,"journal":{"name":"Int. J. Embed. Real Time Commun. Syst.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Real Time Commun. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijertcs.316877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many real-world applications rely on head pose estimation. The performance of head pose estimation has significantly improved with techniques like convolutional neural networks (CNN). However, CNN requires a large amount of data for training. This article presents a new framework for head pose estimation using computationally efficient first-order model-agnostic meta-learning (FO-MAML)-based method and compares the performance with existing MAML-based approaches. Experiments using one-shot, five-shot, and ten-shot settings are done using MAML and FO-MAML. A mean average error (MAEavg) of 7.72, 6.30, and 5.32 has been achieved in predicting head pose using MAML for one-, five-, and ten-shot settings, respectively. Similarly, MAEavg of 8.33, 6.84, and 6.23 has been achieved in predicting head pose using FO-MAML for one-, five-, and ten-shot settings, respectively. The computational complexity of an outer-loop update in MAML is found to be O(n2) whereas for FO-MAML it is O(n).