{"title":"Exploring the Impact of Big Bang-Big Crunch Algorithm Parameters on Welded Beam Design Problem Resolution","authors":"Saman M. Almufti","doi":"10.25007/ajnu.v12n4a1903","DOIUrl":null,"url":null,"abstract":"A Metaheuristic Optimization is a group of algorithms that are widely studied and employed in the scientific literature. Typically, metaheuristics algorithms utilize stochastic operators that make each iteration unique, and they frequently contain controlling parameters that have an impact on the convergence process since their impacts are mostly neglected in most optimization literature, making it difficult to draw conclusions. This paper introduced the Big Bang-Big Crunch (BB-BC) metaheuristic algorithm to evaluate the performance of a metaheuristic algorithm in relation to its control parameter. It also demonstrates the effects of varying the values of BB-BC in solving. The \"Welded Beam Design problem\" is a well-known engineering optimization problem that is classified as a Single-Objective Constrained Optimization issue. Multiple starting parameter values for the BB-BC are evaluated as part of the experimental findings. This is done in an attempt to find the algorithm's optimal starting settings. The lowest, maximum, and mean values of the penalized objective functions are then computed. Finally, the BB-BC results are compared with various metaheuristics algorithms.","PeriodicalId":303943,"journal":{"name":"Academic Journal of Nawroz University","volume":"312 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Nawroz University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25007/ajnu.v12n4a1903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A Metaheuristic Optimization is a group of algorithms that are widely studied and employed in the scientific literature. Typically, metaheuristics algorithms utilize stochastic operators that make each iteration unique, and they frequently contain controlling parameters that have an impact on the convergence process since their impacts are mostly neglected in most optimization literature, making it difficult to draw conclusions. This paper introduced the Big Bang-Big Crunch (BB-BC) metaheuristic algorithm to evaluate the performance of a metaheuristic algorithm in relation to its control parameter. It also demonstrates the effects of varying the values of BB-BC in solving. The "Welded Beam Design problem" is a well-known engineering optimization problem that is classified as a Single-Objective Constrained Optimization issue. Multiple starting parameter values for the BB-BC are evaluated as part of the experimental findings. This is done in an attempt to find the algorithm's optimal starting settings. The lowest, maximum, and mean values of the penalized objective functions are then computed. Finally, the BB-BC results are compared with various metaheuristics algorithms.