Language modeling by variable length sequences: theoretical formulation and evaluation of multigrams

Sabine Deligne, F. Bimbot
{"title":"Language modeling by variable length sequences: theoretical formulation and evaluation of multigrams","authors":"Sabine Deligne, F. Bimbot","doi":"10.1109/ICASSP.1995.479391","DOIUrl":null,"url":null,"abstract":"The multigram model assumes that language can be described as the output of a memoryless source that emits variable-length sequences of words. The estimation of the model parameters can be formulated as a maximum likelihood estimation problem from incomplete data. We show that estimates of the model parameters can be computed through an iterative expectation-maximization algorithm and we describe a forward-backward procedure for its implementation. We report the results of a systematical evaluation of multigrams for language modeling on the ATIS database. The objective performance measure is the test set perplexity. Our results show that multigrams outperform conventional n-grams for this task.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"178","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.479391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 178

Abstract

The multigram model assumes that language can be described as the output of a memoryless source that emits variable-length sequences of words. The estimation of the model parameters can be formulated as a maximum likelihood estimation problem from incomplete data. We show that estimates of the model parameters can be computed through an iterative expectation-maximization algorithm and we describe a forward-backward procedure for its implementation. We report the results of a systematical evaluation of multigrams for language modeling on the ATIS database. The objective performance measure is the test set perplexity. Our results show that multigrams outperform conventional n-grams for this task.
变长序列的语言建模:多重图的理论表述和评价
多元图模型假设语言可以被描述为无记忆源的输出,该源发出可变长度的单词序列。模型参数的估计可以表述为不完全数据的极大似然估计问题。我们证明了模型参数的估计可以通过迭代期望最大化算法计算,并描述了其实现的前向后过程。我们报告了在ATIS数据库上对语言建模的多图进行系统评估的结果。客观性能度量是测试集的困惑度。我们的结果表明,在这个任务中,多重图优于传统的n图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信