Catchem: A Browser Plugin for the Panama Papers Using Approximate String Matching

Panos Kostakos, Miika Moilanen, Arttu Niemela, M. Oussalah
{"title":"Catchem: A Browser Plugin for the Panama Papers Using Approximate String Matching","authors":"Panos Kostakos, Miika Moilanen, Arttu Niemela, M. Oussalah","doi":"10.1109/EISIC.2017.28","DOIUrl":null,"url":null,"abstract":"The Panama Papers is a collection of 11.5 million leaked records that contain information for more than 214,488 offshore entities. This collection is growing rapidly as more leaked records become available online. In this paper, we present a work in progress on a web browser plugin that detects company names from the Panama Papers and alerts the user by means of unobtrusive visual cues. We matched a random sample of company names from the Public Works and Government Services Canada registry against the Panama Papers using three different string matching techniques. Monge-Elkan is found to provide the best matching results but at increased computational cost. Levenshtein-based approach is found to provide the best tradeoff between matching and computational cost, while Jacquard index like approach is found to be less sensitive to slight textual change.","PeriodicalId":436947,"journal":{"name":"2017 European Intelligence and Security Informatics Conference (EISIC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Intelligence and Security Informatics Conference (EISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EISIC.2017.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Panama Papers is a collection of 11.5 million leaked records that contain information for more than 214,488 offshore entities. This collection is growing rapidly as more leaked records become available online. In this paper, we present a work in progress on a web browser plugin that detects company names from the Panama Papers and alerts the user by means of unobtrusive visual cues. We matched a random sample of company names from the Public Works and Government Services Canada registry against the Panama Papers using three different string matching techniques. Monge-Elkan is found to provide the best matching results but at increased computational cost. Levenshtein-based approach is found to provide the best tradeoff between matching and computational cost, while Jacquard index like approach is found to be less sensitive to slight textual change.
随着越来越多的泄露记录在网上公开,这一收集正在迅速增长。Monge-Elkan算法提供了最好的匹配结果,但其计算成本较高。基于levenshtein的方法在匹配和计算成本之间提供了最好的权衡,而基于Jacquard索引的方法对轻微的文本变化不太敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信