Toward an improved error metric

Q. Tian, Q. Xue, Jie Yu, N. Sebe, Thomas S. Huang
{"title":"Toward an improved error metric","authors":"Q. Tian, Q. Xue, Jie Yu, N. Sebe, Thomas S. Huang","doi":"10.1109/ICIP.2004.1421533","DOIUrl":null,"url":null,"abstract":"In many computer vision algorithms, the well known Euclidean or SSD (sum of the squared differences) metric is prevalent and justified from a maximum likelihood perspective when the additive noise is Gaussian. However, Gaussian noise distribution assumption is often invalid. Previous research has found that other metrics such as double exponential metric or Cauchy metric provide better results, in accordance with the maximum likelihood approach. In this paper, we examine different error metrics and provide a theoretical approach to derive a rich set of nonlinear estimations. Our results on image databases show more robust results are obtained for noise estimation based on the proposed error metric analysis.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1421533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In many computer vision algorithms, the well known Euclidean or SSD (sum of the squared differences) metric is prevalent and justified from a maximum likelihood perspective when the additive noise is Gaussian. However, Gaussian noise distribution assumption is often invalid. Previous research has found that other metrics such as double exponential metric or Cauchy metric provide better results, in accordance with the maximum likelihood approach. In this paper, we examine different error metrics and provide a theoretical approach to derive a rich set of nonlinear estimations. Our results on image databases show more robust results are obtained for noise estimation based on the proposed error metric analysis.
朝着改进的误差度量
在许多计算机视觉算法中,当加性噪声是高斯噪声时,众所周知的欧几里得或SSD(差异平方和)度量是普遍存在的,并且从最大似然角度来看是合理的。然而,高斯噪声分布假设往往是无效的。先前的研究发现,根据最大似然方法,其他度量如双指数度量或柯西度量提供更好的结果。在本文中,我们研究了不同的误差度量,并提供了一种理论方法来推导丰富的非线性估计集。我们在图像数据库上的结果表明,基于误差度量分析的噪声估计结果更加稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信