{"title":"Asymmetric Bayesian personalized ranking for one-class collaborative filtering","authors":"Sha Ouyang, Lin Li, Weike Pan, Zhong Ming","doi":"10.1145/3298689.3347051","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel preference assumption for modeling users' one-class feedback such as \"thumb up\" in an important recommendation problem called one-class collaborative filtering (OCCF). Specifically, we address a fundamental limitation of a recent symmetric pairwise preference assumption and propose a novel and first asymmetric one, which is able to make the preferences of different users more comparable. With the proposed asymmetric pairwise preference assumption, we further design a novel recommendation algorithm called asymmetric Bayesian personalized ranking (ABPR). Extensive empirical studies on two large and public datasets show that our ABPR performs significantly better than several state-of-the-art recommendation methods with either pointwise preference assumption or pairwise preference assumption.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3347051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In this paper, we propose a novel preference assumption for modeling users' one-class feedback such as "thumb up" in an important recommendation problem called one-class collaborative filtering (OCCF). Specifically, we address a fundamental limitation of a recent symmetric pairwise preference assumption and propose a novel and first asymmetric one, which is able to make the preferences of different users more comparable. With the proposed asymmetric pairwise preference assumption, we further design a novel recommendation algorithm called asymmetric Bayesian personalized ranking (ABPR). Extensive empirical studies on two large and public datasets show that our ABPR performs significantly better than several state-of-the-art recommendation methods with either pointwise preference assumption or pairwise preference assumption.