Deriving Validity Time in Knowledge Graph

J. Leblay, M. Chekol
{"title":"Deriving Validity Time in Knowledge Graph","authors":"J. Leblay, M. Chekol","doi":"10.1145/3184558.3191639","DOIUrl":null,"url":null,"abstract":"Knowledge Graphs (KGs) are a popular means to represent knowledge on the Web, typically in the form of node/edge labelled directed graphs. We consider temporal KGs, in which edges are further annotated with time intervals, reflecting when the relationship between entities held in time. In this paper, we focus on the task of predicting time validity for unannotated edges. We introduce the problem as a variation of relational embedding. We adapt existing approaches, and explore the importance example selection and the incorporation of side information in the learning process. We present our experimental evaluation in details.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"215","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3191639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 215

Abstract

Knowledge Graphs (KGs) are a popular means to represent knowledge on the Web, typically in the form of node/edge labelled directed graphs. We consider temporal KGs, in which edges are further annotated with time intervals, reflecting when the relationship between entities held in time. In this paper, we focus on the task of predicting time validity for unannotated edges. We introduce the problem as a variation of relational embedding. We adapt existing approaches, and explore the importance example selection and the incorporation of side information in the learning process. We present our experimental evaluation in details.
知识图谱中有效时间的提取
知识图(Knowledge Graphs, KGs)是一种在网络上表示知识的流行方法,通常以节点/边缘标记有向图的形式出现。我们考虑时间KGs,其中边缘进一步用时间间隔注释,反映实体之间的关系何时在时间上保持。在本文中,我们重点研究了未注释边的时间有效性预测问题。我们把这个问题作为关系嵌入的一个变体来介绍。我们采用现有的方法,并探索在学习过程中重要的例子选择和侧面信息的结合。我们详细地介绍了我们的实验评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信