Deriving Kripke structures from time series segmentation results

S. Tadepalli, Naren Ramakrishnan, B. Mishra, L. T. Watson, R. Helm
{"title":"Deriving Kripke structures from time series segmentation results","authors":"S. Tadepalli, Naren Ramakrishnan, B. Mishra, L. T. Watson, R. Helm","doi":"10.1109/WODES.2008.4605980","DOIUrl":null,"url":null,"abstract":"Kripke structures are important modeling formalisms to understand the behavior of reactive systems. We present an approach to automatically infer Kripke structures from time series datasets. Our algorithm bridges the continuous world of time profiles and the discrete symbols of Kripke structures by incorporating a segmentation algorithm as an intermediate step. This approach identifies, in an unsupervised manner, the states of the Kripke structure, the transition relation, and the properties (propositions) that hold true in each state. We demonstrate experimental results of our approach to understanding the interplay between key biological processes.","PeriodicalId":105225,"journal":{"name":"2008 9th International Workshop on Discrete Event Systems","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Workshop on Discrete Event Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WODES.2008.4605980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Kripke structures are important modeling formalisms to understand the behavior of reactive systems. We present an approach to automatically infer Kripke structures from time series datasets. Our algorithm bridges the continuous world of time profiles and the discrete symbols of Kripke structures by incorporating a segmentation algorithm as an intermediate step. This approach identifies, in an unsupervised manner, the states of the Kripke structure, the transition relation, and the properties (propositions) that hold true in each state. We demonstrate experimental results of our approach to understanding the interplay between key biological processes.
从时间序列分割结果中导出Kripke结构
克里普克结构是理解反应系统行为的重要建模形式。提出了一种从时间序列数据集自动推断Kripke结构的方法。我们的算法通过将分割算法作为中间步骤,将时间轮廓的连续世界和Kripke结构的离散符号连接起来。这种方法以一种无监督的方式识别Kripke结构的状态、转换关系以及在每个状态下成立的属性(命题)。我们展示了我们的方法来理解关键生物过程之间的相互作用的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信