Algebraic topological entropy

T. Hudetz
{"title":"Algebraic topological entropy","authors":"T. Hudetz","doi":"10.1515/9783112581445-004","DOIUrl":null,"url":null,"abstract":"As a \"by-product\" of the Connes-Nainhofer-Thirring theory of dynamical entropy for (originally nonAbelian) nuclear C*-algebras, the well-known variational principle for topological entropy is equivalently reformulated in purely algebraically defined terms for (separable) Abelian C*-algebras. This \"algebraic variational principle\" should not only nicely illustrate the ''feed-back'' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by \"algebraic\" methods and could thus further simplify the original proof of the variational principle (at least \"in principle\"). Invited contribution to the International Seminar on Applied Mathematics (ISAM 90) on \"Dynamical Systems\", Gaussig, GDR.","PeriodicalId":326120,"journal":{"name":"Nonlinear Dynamics and Quantum Dynamical Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Dynamics and Quantum Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783112581445-004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

As a "by-product" of the Connes-Nainhofer-Thirring theory of dynamical entropy for (originally nonAbelian) nuclear C*-algebras, the well-known variational principle for topological entropy is equivalently reformulated in purely algebraically defined terms for (separable) Abelian C*-algebras. This "algebraic variational principle" should not only nicely illustrate the ''feed-back'' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by "algebraic" methods and could thus further simplify the original proof of the variational principle (at least "in principle"). Invited contribution to the International Seminar on Applied Mathematics (ISAM 90) on "Dynamical Systems", Gaussig, GDR.
代数拓扑熵
作为(原本非阿贝尔的)核C*-代数的动态熵的Connes-Nainhofer-Thirring理论的“副产品”,众所周知的拓扑熵变分原理等价地在(可分离的)阿贝尔C*-代数的纯代数定义项中重新表述。这种“代数变分原理”不仅可以很好地说明量子动力系统开发的方法对经典理论的“反馈”,而且还可以直接用“代数”方法证明,从而进一步简化变分原理的原始证明(至少在“原则上”)。特邀论文,应用数学国际研讨会(ISAM 90)“动力系统”,高斯西格,德国。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信