Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and Lipon Via Cryogenic Electron Microscopy

Diyi Cheng, T. Wynn, Xuefeng Wang, Shen Wang, Minghao Zhang, R. Shimizu, Shuang Bai, Han Nguyen, C. Fang, Min‐cheol Kim, Weikang Li, B. Lu, S. Kim, Y. Meng
{"title":"Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and Lipon Via Cryogenic Electron Microscopy","authors":"Diyi Cheng, T. Wynn, Xuefeng Wang, Shen Wang, Minghao Zhang, R. Shimizu, Shuang Bai, Han Nguyen, C. Fang, Min‐cheol Kim, Weikang Li, B. Lu, S. Kim, Y. Meng","doi":"10.2139/ssrn.3640837","DOIUrl":null,"url":null,"abstract":"Summary The solid electrolyte interphase (SEI) is regarded as the most complex but the least understood constituent in secondary batteries using liquid and solid electrolytes. The dearth of such knowledge in all-solid-state battery (ASSB) has hindered a complete understanding of how certain solid-state electrolytes, such as LiPON, manifest exemplary stability against lithium metal. By employing cryogenic electron microscopy (cryo-EM), the interphase between lithium metal and LiPON is successfully preserved and probed, revealing a multilayer-mosaic SEI structure with concentration gradients of nitrogen and phosphorus, materializing as crystallites within an amorphous matrix. This unique SEI nanostructure is less than 80 nm and is stable and free of any organic lithium-containing species or lithium fluoride components, in contrast to SEIs often found in state-of-the-art organic liquid electrolytes. Our findings reveal insights on the nanostructures and chemistry of such SEIs as a key component in lithium metal batteries to stabilize lithium metal anode.","PeriodicalId":360688,"journal":{"name":"EngRN: Electrochemical Energy Engineering (EngRN) (Topic)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Electrochemical Energy Engineering (EngRN) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3640837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

Abstract

Summary The solid electrolyte interphase (SEI) is regarded as the most complex but the least understood constituent in secondary batteries using liquid and solid electrolytes. The dearth of such knowledge in all-solid-state battery (ASSB) has hindered a complete understanding of how certain solid-state electrolytes, such as LiPON, manifest exemplary stability against lithium metal. By employing cryogenic electron microscopy (cryo-EM), the interphase between lithium metal and LiPON is successfully preserved and probed, revealing a multilayer-mosaic SEI structure with concentration gradients of nitrogen and phosphorus, materializing as crystallites within an amorphous matrix. This unique SEI nanostructure is less than 80 nm and is stable and free of any organic lithium-containing species or lithium fluoride components, in contrast to SEIs often found in state-of-the-art organic liquid electrolytes. Our findings reveal insights on the nanostructures and chemistry of such SEIs as a key component in lithium metal batteries to stabilize lithium metal anode.
通过低温电镜揭示金属锂和锂离子之间固体电解质界面的稳定性
固体电解质间相(SEI)被认为是使用液体和固体电解质的二次电池中最复杂但最不为人所知的成分。在全固态电池(ASSB)中缺乏这样的知识,阻碍了对某些固态电解质(如LiPON)如何表现出对锂金属的典型稳定性的全面理解。通过低温电子显微镜(cryo-EM),成功地保存和探测了锂金属和LiPON之间的界面,揭示了具有氮和磷浓度梯度的多层镶嵌SEI结构,在非晶基体中以晶体形式物化。这种独特的SEI纳米结构小于80纳米,稳定且不含任何含有机锂物质或氟化锂成分,与最先进的有机液体电解质中常见的SEI相比。我们的研究结果揭示了这种SEIs的纳米结构和化学性质,它是锂金属电池稳定锂金属阳极的关键成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信