Fundamental Analysis of Detailed Financial Data: A Machine Learning Approach

Xi Chen, Yang Ha Cho, Y. Dou, B. Lev
{"title":"Fundamental Analysis of Detailed Financial Data: A Machine Learning Approach","authors":"Xi Chen, Yang Ha Cho, Y. Dou, B. Lev","doi":"10.2139/ssrn.3741015","DOIUrl":null,"url":null,"abstract":"We conduct a fundamental analysis of detailed financial information to predict earnings. Since 2012, all U.S. public companies must tag quantitative amounts in financial statements and footnotes of their 10-K reports using the eXtensible Business Reporting Language (XBRL). Leveraging machine learning methods, we combine the high-dimensional XBRL-tagged financial data into a summary measure for the direction of one-year-ahead earnings changes. The measure shows significant out-of-sample predictive power concerning the direction of earnings changes. Hedge portfolios are formed based on this measure during 2015-2018. The annual size-adjusted returns to the hedge portfolios range from 5.02 to 9.7 percent. Our measure and strategies outperform those of Ou and Penman (1989), who extract the summary measure from 65 accounting variables using logistic regressions. Additional analyses suggest that the outperformance stems from both nonlinear predictor interactions missed by regressions and the use of more detailed financial data.","PeriodicalId":134520,"journal":{"name":"ERPN: Finance (Innovation) (Sub-Topic)","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERPN: Finance (Innovation) (Sub-Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3741015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We conduct a fundamental analysis of detailed financial information to predict earnings. Since 2012, all U.S. public companies must tag quantitative amounts in financial statements and footnotes of their 10-K reports using the eXtensible Business Reporting Language (XBRL). Leveraging machine learning methods, we combine the high-dimensional XBRL-tagged financial data into a summary measure for the direction of one-year-ahead earnings changes. The measure shows significant out-of-sample predictive power concerning the direction of earnings changes. Hedge portfolios are formed based on this measure during 2015-2018. The annual size-adjusted returns to the hedge portfolios range from 5.02 to 9.7 percent. Our measure and strategies outperform those of Ou and Penman (1989), who extract the summary measure from 65 accounting variables using logistic regressions. Additional analyses suggest that the outperformance stems from both nonlinear predictor interactions missed by regressions and the use of more detailed financial data.
详细财务数据的基本分析:机器学习方法
我们对详细的财务信息进行基本分析,以预测收益。自2012年以来,所有美国上市公司都必须使用可扩展商业报告语言(XBRL)在财务报表和10-K报告的脚注中标注定量金额。利用机器学习方法,我们将高维xbrl标记的财务数据结合起来,汇总衡量未来一年收益变化的方向。该措施显示了显著的样本外预测能力关于收益变化的方向。对冲投资组合是在2015-2018年期间根据这一指标形成的。对冲投资组合经规模调整后的年回报率在5.02 - 9.7%之间。我们的措施和策略优于Ou和Penman(1989)的措施和策略,他们使用逻辑回归从65个会计变量中提取汇总措施。额外的分析表明,优异的表现源于回归和使用更详细的财务数据所遗漏的非线性预测因子相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信