Partial Computation Offloading and Resource Allocation via Deep Deterministic Policy Gradient

Yingxin Shan, Peng Liao, Zhuo Wang, Lin An
{"title":"Partial Computation Offloading and Resource Allocation via Deep Deterministic Policy Gradient","authors":"Yingxin Shan, Peng Liao, Zhuo Wang, Lin An","doi":"10.1109/NaNA56854.2022.00070","DOIUrl":null,"url":null,"abstract":"Recent years have seen an explosive growth of mobile Internet applications, with a plethora of computation-intensive and latency-sensitive services running on the Internet of Things (IoT), posing a great challenge to its limited network resources. Computation offloading technology, as a hot direction in the field of mobile edge computing (MEC), can provide a reliable means to achieve efficient computation migration strate-gies. In this paper, we focus on optimizing the task offloading and resource allocation problem in the MEC system by a deep deterministic policy gradient (DDPG). For our simulated deployment of a single MEC server and multi-user scenario, we design a task cache queue for each terminal user and define the allocation ratio vectors of task offloading and resource allocation. By minimizing the weighted sum of the total time latency and the energy consumption, an optimal solution can be achieved via the DDPG. Experimental results show that the proposed scheme performs better in reducing total system overhead than the baselines.","PeriodicalId":113743,"journal":{"name":"2022 International Conference on Networking and Network Applications (NaNA)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Networking and Network Applications (NaNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaNA56854.2022.00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent years have seen an explosive growth of mobile Internet applications, with a plethora of computation-intensive and latency-sensitive services running on the Internet of Things (IoT), posing a great challenge to its limited network resources. Computation offloading technology, as a hot direction in the field of mobile edge computing (MEC), can provide a reliable means to achieve efficient computation migration strate-gies. In this paper, we focus on optimizing the task offloading and resource allocation problem in the MEC system by a deep deterministic policy gradient (DDPG). For our simulated deployment of a single MEC server and multi-user scenario, we design a task cache queue for each terminal user and define the allocation ratio vectors of task offloading and resource allocation. By minimizing the weighted sum of the total time latency and the energy consumption, an optimal solution can be achieved via the DDPG. Experimental results show that the proposed scheme performs better in reducing total system overhead than the baselines.
基于深度确定性策略梯度的部分计算卸载与资源分配
近年来,移动互联网应用呈爆炸式增长,物联网(IoT)上运行着大量计算密集型和对延迟敏感的服务,对其有限的网络资源构成了巨大挑战。计算卸载技术可以为实现高效的计算迁移策略提供可靠的手段,是移动边缘计算领域的一个热点方向。本文主要研究了基于深度确定性策略梯度(DDPG)的MEC系统任务卸载和资源分配优化问题。针对单MEC服务器和多用户场景的模拟部署,我们为每个终端用户设计了任务缓存队列,并定义了任务卸载和资源分配的分配比例向量。通过最小化总时间延迟和能耗的加权和,可以通过DDPG获得最优解。实验结果表明,该方案在降低系统总开销方面优于基线方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信