Enforcing Crash Consistency of Scientific Applications in Non-Volatile Main Memory Systems

Tyler Coy, Xuechen Zhang
{"title":"Enforcing Crash Consistency of Scientific Applications in Non-Volatile Main Memory Systems","authors":"Tyler Coy, Xuechen Zhang","doi":"10.1109/FTXS49593.2019.00007","DOIUrl":null,"url":null,"abstract":"To fully leverage the emerging non-volatile main memory (NVMM) for high-performance computing, programmers need efficient data structures that are aware of NVMM memory models and provide crash consistency. Manual creation of NVMM-aware persistent data structures requires a deep understanding of how to create persistent snapshots of memory objects corresponding to the data structures and substantial code modification, which makes it very difficult to use in its manual form even for experienced programmers. To simplify the process, we design a compiler-assistant technique, NVPath. With the aid of compilers, it automatically generates NVMM-aware persistent data structures that provide the same level of guarantee of crash consistency compared to the baseline code. Compiler-assistant code annotation and transformation are general and can be applied to applications using various data structures. Furthermore, it is a gray-box technique which requires minimum users’ input. Finally, it keeps the baseline code structure for good readability and maintenance. Our experimental results with real-world scientific applications (e.g., matrix multiplication, LU decomposition, adaptive-mesh refinement, and page ranking) show that the performance of annotated programs is commensurate with the version using the manual code transformation on the Titan supercomputer.","PeriodicalId":199103,"journal":{"name":"2019 IEEE/ACM 9th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 9th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTXS49593.2019.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To fully leverage the emerging non-volatile main memory (NVMM) for high-performance computing, programmers need efficient data structures that are aware of NVMM memory models and provide crash consistency. Manual creation of NVMM-aware persistent data structures requires a deep understanding of how to create persistent snapshots of memory objects corresponding to the data structures and substantial code modification, which makes it very difficult to use in its manual form even for experienced programmers. To simplify the process, we design a compiler-assistant technique, NVPath. With the aid of compilers, it automatically generates NVMM-aware persistent data structures that provide the same level of guarantee of crash consistency compared to the baseline code. Compiler-assistant code annotation and transformation are general and can be applied to applications using various data structures. Furthermore, it is a gray-box technique which requires minimum users’ input. Finally, it keeps the baseline code structure for good readability and maintenance. Our experimental results with real-world scientific applications (e.g., matrix multiplication, LU decomposition, adaptive-mesh refinement, and page ranking) show that the performance of annotated programs is commensurate with the version using the manual code transformation on the Titan supercomputer.
在非易失性主存系统中加强科学应用程序的崩溃一致性
为了充分利用新兴的非易失性主存储器(NVMM)进行高性能计算,程序员需要高效的数据结构,这些数据结构能够识别NVMM内存模型并提供崩溃一致性。手动创建支持nvmm的持久数据结构需要深入了解如何创建与数据结构相对应的内存对象的持久快照和大量的代码修改,这使得即使对于经验丰富的程序员也很难以手动形式使用它。为了简化这个过程,我们设计了一个编译器辅助技术,NVPath。在编译器的帮助下,它自动生成nvmm感知的持久数据结构,提供与基线代码相同级别的崩溃一致性保证。编译器辅助代码注释和转换是通用的,可以应用于使用各种数据结构的应用程序。此外,它是一种灰盒技术,需要最少的用户输入。最后,它保持了基线代码结构,以获得良好的可读性和可维护性。我们对现实世界的科学应用(例如矩阵乘法、LU分解、自适应网格细化和页面排序)的实验结果表明,带注释的程序的性能与在Titan超级计算机上使用手动代码转换的版本相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信