Customization of virtual machine allocation policy using k-means clustering algorithm to minimize power consumption in data centers

Ulysse Rugwiro, C. Gu
{"title":"Customization of virtual machine allocation policy using k-means clustering algorithm to minimize power consumption in data centers","authors":"Ulysse Rugwiro, C. Gu","doi":"10.1145/3018896.3018947","DOIUrl":null,"url":null,"abstract":"Cloud Computing provides rapid provision of computing resources like processing power, memory, network resources, storage, etc. Running computing resources for longer time, leads energy consumption, increase the emission of Carbon Dioxide (CO2) and increase the expenditure cost for the resources usage. Hence there is a necessity to minimize the execution time to reduce energy consumption in the cloud environment. One of the existing approaches to reducing energy consumption is based on Migration and Placement Policy for Virtual Machine, but still improving placement technique we can further minimize power consumption. In our proposed architecture for cloud resource allocation based on Clustering method, we do map a group of tasks to virtual machines. For clustering, we work on task usage of CPU, memory, and bandwidth. This proposed clustering technique further decreases energy consumption by efficient resource allocation.","PeriodicalId":131464,"journal":{"name":"Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing","volume":"674 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3018896.3018947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Cloud Computing provides rapid provision of computing resources like processing power, memory, network resources, storage, etc. Running computing resources for longer time, leads energy consumption, increase the emission of Carbon Dioxide (CO2) and increase the expenditure cost for the resources usage. Hence there is a necessity to minimize the execution time to reduce energy consumption in the cloud environment. One of the existing approaches to reducing energy consumption is based on Migration and Placement Policy for Virtual Machine, but still improving placement technique we can further minimize power consumption. In our proposed architecture for cloud resource allocation based on Clustering method, we do map a group of tasks to virtual machines. For clustering, we work on task usage of CPU, memory, and bandwidth. This proposed clustering technique further decreases energy consumption by efficient resource allocation.
使用k-means聚类算法定制虚拟机分配策略,最小化数据中心的功耗
云计算提供了处理能力、内存、网络资源、存储等计算资源的快速供应。长时间运行计算资源会导致能源消耗,增加二氧化碳(CO2)的排放,增加资源使用的支出成本。因此,有必要最小化执行时间,以减少云环境中的能耗。现有的降低能耗的方法之一是基于虚拟机的迁移和放置策略,但仍需改进放置技术,才能进一步降低能耗。在我们提出的基于集群方法的云资源分配架构中,我们确实将一组任务映射到虚拟机。对于集群,我们研究任务对CPU、内存和带宽的使用情况。本文提出的聚类技术通过有效的资源分配进一步降低了能源消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信