A genetic learning of fuzzy relational rules

Yoel Caises, E. Leyva, A. G. Muñoz, Raúl Pérez
{"title":"A genetic learning of fuzzy relational rules","authors":"Yoel Caises, E. Leyva, A. G. Muñoz, Raúl Pérez","doi":"10.1109/FUZZY.2010.5584718","DOIUrl":null,"url":null,"abstract":"Two basic requirements of fuzzy modeling are the accuracy and simplicity of the knowledge obtained. In this study, we propose a genetic learning algorithm of fuzzy relational rules, that is, fuzzy rules that include fuzzy relations. Fuzzy relational rules allow us to obtain fuzzy models with a good interpretability-accuracy trade-off. Since, the inclusion of relations increases the accuracy keeping the interpretability but increasing the number of features to be considered in the learning process. We also present a model to reduce the additional complexity that occurs when using this new type of rules. Finally, we also present an experimental study that demonstrated the advantage of the use of relational fuzzy rules.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Two basic requirements of fuzzy modeling are the accuracy and simplicity of the knowledge obtained. In this study, we propose a genetic learning algorithm of fuzzy relational rules, that is, fuzzy rules that include fuzzy relations. Fuzzy relational rules allow us to obtain fuzzy models with a good interpretability-accuracy trade-off. Since, the inclusion of relations increases the accuracy keeping the interpretability but increasing the number of features to be considered in the learning process. We also present a model to reduce the additional complexity that occurs when using this new type of rules. Finally, we also present an experimental study that demonstrated the advantage of the use of relational fuzzy rules.
模糊关系规则的遗传学习
模糊建模的两个基本要求是所获得知识的准确性和简单性。在本研究中,我们提出了一种模糊关系规则的遗传学习算法,即包含模糊关系的模糊规则。模糊关系规则允许我们获得具有良好的可解释性和准确性权衡的模糊模型。因为,关系的包含提高了准确性,保持了可解释性,但增加了学习过程中需要考虑的特征的数量。我们还提供了一个模型,以减少使用这种新类型规则时出现的额外复杂性。最后,我们还提出了一个实验研究,证明了使用关系模糊规则的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信