Application of Artificial Intelligence Algorithm in Analysis of Tunnel Geotechnical Mechanical Parameters

Juan Xiang, Zhanfeng Chen
{"title":"Application of Artificial Intelligence Algorithm in Analysis of Tunnel Geotechnical Mechanical Parameters","authors":"Juan Xiang, Zhanfeng Chen","doi":"10.1109/ACEDPI58926.2023.00074","DOIUrl":null,"url":null,"abstract":"In recent years, with the continuous development of civil engineering, the analysis of geotechnical mechanical parameters is becoming more and more important. With the rapid development of computer technology, the numerical theory and method of geotechnical engineering are becoming more and more mature. Geotechnical mechanical parameters include soil mechanical parameters and rock mechanical parameters. On this basis, the mechanical parameters of soil are divided into Poisson’s ratio, elastic modulus, subgrade coefficient, bulk elastic modulus, shear strength and shear modulus. Rock mechanical parameters mainly include Poisson’s ratio, elastic modulus, subgrade coefficient, bulk elastic modulus, shear strength and shear modulus of rock. Of course, with the development of science and technology, more and more artificial intelligence algorithms are applied to the analysis of geotechnical mechanical parameters, which brings a lot of convenience to the research in this field. This paper aims to improve the problems in the analysis of tunnel geotechnical parameters as much as possible by studying the intelligent algorithm and the tunnel geotechnical parameter analysis method model.","PeriodicalId":124469,"journal":{"name":"2023 Asia-Europe Conference on Electronics, Data Processing and Informatics (ACEDPI)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Asia-Europe Conference on Electronics, Data Processing and Informatics (ACEDPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACEDPI58926.2023.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, with the continuous development of civil engineering, the analysis of geotechnical mechanical parameters is becoming more and more important. With the rapid development of computer technology, the numerical theory and method of geotechnical engineering are becoming more and more mature. Geotechnical mechanical parameters include soil mechanical parameters and rock mechanical parameters. On this basis, the mechanical parameters of soil are divided into Poisson’s ratio, elastic modulus, subgrade coefficient, bulk elastic modulus, shear strength and shear modulus. Rock mechanical parameters mainly include Poisson’s ratio, elastic modulus, subgrade coefficient, bulk elastic modulus, shear strength and shear modulus of rock. Of course, with the development of science and technology, more and more artificial intelligence algorithms are applied to the analysis of geotechnical mechanical parameters, which brings a lot of convenience to the research in this field. This paper aims to improve the problems in the analysis of tunnel geotechnical parameters as much as possible by studying the intelligent algorithm and the tunnel geotechnical parameter analysis method model.
人工智能算法在隧道岩土力学参数分析中的应用
近年来,随着土木工程的不断发展,岩土力学参数的分析变得越来越重要。随着计算机技术的飞速发展,岩土工程的数值理论和方法日趋成熟。岩土力学参数包括土力学参数和岩石力学参数。在此基础上,将土体力学参数分为泊松比、弹性模量、路基系数、体弹性模量、抗剪强度和抗剪模量。岩石力学参数主要包括泊松比、弹性模量、路基系数、体弹性模量、岩石抗剪强度和抗剪模量。当然,随着科学技术的发展,越来越多的人工智能算法被应用到岩土力学参数的分析中,这给这一领域的研究带来了很多便利。本文旨在通过对智能算法和隧道岩土参数分析方法模型的研究,尽可能地改进隧道岩土参数分析中存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信