Processing Acceleration with Resistive Memory-based Computation

M. Imani, Yan Cheng, T. Simunic
{"title":"Processing Acceleration with Resistive Memory-based Computation","authors":"M. Imani, Yan Cheng, T. Simunic","doi":"10.1145/2989081.2989086","DOIUrl":null,"url":null,"abstract":"The Internet of Things significantly increases the amount of data generated that strains the processing capability of current computing systems. Approximate computing can accelerate the computation and dramatically reduce the energy consumption with controllable accuracy loss. In this paper, we propose a Resistive Associative Unit, called RAU, which approximates computation alongside processing cores. RAU exploits the data locality with associative memory. It finds a row which has the closest distance to input patterns while considering the impact of each bit index on the computation accuracy. Our evaluation shows that RAU can accelerate the GPGPU computation by 1.15x and improve the energy efficiency by 36% at only 10% accuracy loss.","PeriodicalId":283512,"journal":{"name":"Proceedings of the Second International Symposium on Memory Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Symposium on Memory Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2989081.2989086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The Internet of Things significantly increases the amount of data generated that strains the processing capability of current computing systems. Approximate computing can accelerate the computation and dramatically reduce the energy consumption with controllable accuracy loss. In this paper, we propose a Resistive Associative Unit, called RAU, which approximates computation alongside processing cores. RAU exploits the data locality with associative memory. It finds a row which has the closest distance to input patterns while considering the impact of each bit index on the computation accuracy. Our evaluation shows that RAU can accelerate the GPGPU computation by 1.15x and improve the energy efficiency by 36% at only 10% accuracy loss.
基于电阻存储器计算的处理加速
物联网显著增加了产生的数据量,使当前计算系统的处理能力不堪重负。近似计算可以在精度损失可控的情况下加快计算速度,显著降低能耗。在本文中,我们提出了一种称为RAU的电阻关联单元,它近似于计算和处理核心。RAU利用关联内存的数据局部性。它在考虑每个位索引对计算精度的影响的同时,找到与输入模式距离最近的一行。我们的评估表明,RAU可以在只有10%的精度损失的情况下,将GPGPU的计算速度提高1.15倍,将能源效率提高36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信