Empirical approximation for Lyapunov functions with artificial neural nets

G. Serpen
{"title":"Empirical approximation for Lyapunov functions with artificial neural nets","authors":"G. Serpen","doi":"10.1109/IJCNN.2005.1555943","DOIUrl":null,"url":null,"abstract":"An artificial neural network is proposed as a function approximator for empirical modeling of a Lyapunov function for a nonlinear dynamic system that projects stable behavior as potentially observable in its state space. The theoretical framework for the methodology of designing the so-called Lyapunov neural network, which empirically models a Lyapunov function, is described. Algorithms for training the Lyapunov neural network for a neurodynamics system are presented.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

An artificial neural network is proposed as a function approximator for empirical modeling of a Lyapunov function for a nonlinear dynamic system that projects stable behavior as potentially observable in its state space. The theoretical framework for the methodology of designing the so-called Lyapunov neural network, which empirically models a Lyapunov function, is described. Algorithms for training the Lyapunov neural network for a neurodynamics system are presented.
李雅普诺夫函数的人工神经网络经验逼近
提出了一种人工神经网络作为Lyapunov函数经验建模的函数逼近器,用于非线性动态系统,该系统在其状态空间中投射稳定行为作为潜在可观察到的。描述了设计所谓的李雅普诺夫神经网络的理论框架,该网络是经验地对李雅普诺夫函数进行建模的。提出了一种用于神经动力学系统的李雅普诺夫神经网络的训练算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信