{"title":"Empirical approximation for Lyapunov functions with artificial neural nets","authors":"G. Serpen","doi":"10.1109/IJCNN.2005.1555943","DOIUrl":null,"url":null,"abstract":"An artificial neural network is proposed as a function approximator for empirical modeling of a Lyapunov function for a nonlinear dynamic system that projects stable behavior as potentially observable in its state space. The theoretical framework for the methodology of designing the so-called Lyapunov neural network, which empirically models a Lyapunov function, is described. Algorithms for training the Lyapunov neural network for a neurodynamics system are presented.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
An artificial neural network is proposed as a function approximator for empirical modeling of a Lyapunov function for a nonlinear dynamic system that projects stable behavior as potentially observable in its state space. The theoretical framework for the methodology of designing the so-called Lyapunov neural network, which empirically models a Lyapunov function, is described. Algorithms for training the Lyapunov neural network for a neurodynamics system are presented.