{"title":"MIT-QCRI Arabic dialect identification system for the 2017 multi-genre broadcast challenge","authors":"Suwon Shon, Ahmed M. Ali, James R. Glass","doi":"10.1109/ASRU.2017.8268960","DOIUrl":null,"url":null,"abstract":"In order to successfully annotate the Arabic speech content found in open-domain media broadcasts, it is essential to be able to process a diverse set of Arabic dialects. For the 2017 Multi-Genre Broadcast challenge (MGB-3) there were two possible tasks: Arabic speech recognition, and Arabic Dialect Identification (ADI). In this paper, we describe our efforts to create an ADI system for the MGB-3 challenge, with the goal of distinguishing amongst four major Arabic dialects, as well as Modern Standard Arabic. Our research focused on dialect variability and domain mismatches between the training and test domain. In order to achieve a robust ADI system, we explored both Siamese neural network models to learn similarity and dissimilarities among Arabic dialects, as well as i-vector post-processing to adapt domain mismatches. Both Acoustic and linguistic features were used for the final MGB-3 submissions, with the best primary system achieving 75% accuracy on the official 10hr test set.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
In order to successfully annotate the Arabic speech content found in open-domain media broadcasts, it is essential to be able to process a diverse set of Arabic dialects. For the 2017 Multi-Genre Broadcast challenge (MGB-3) there were two possible tasks: Arabic speech recognition, and Arabic Dialect Identification (ADI). In this paper, we describe our efforts to create an ADI system for the MGB-3 challenge, with the goal of distinguishing amongst four major Arabic dialects, as well as Modern Standard Arabic. Our research focused on dialect variability and domain mismatches between the training and test domain. In order to achieve a robust ADI system, we explored both Siamese neural network models to learn similarity and dissimilarities among Arabic dialects, as well as i-vector post-processing to adapt domain mismatches. Both Acoustic and linguistic features were used for the final MGB-3 submissions, with the best primary system achieving 75% accuracy on the official 10hr test set.