Execution Flow Aware Profiling for ROS-based Autonomous Vehicle Software

Shao-Hua Wang, Chia-Heng Tu, C. Huang, J. Juang
{"title":"Execution Flow Aware Profiling for ROS-based Autonomous Vehicle Software","authors":"Shao-Hua Wang, Chia-Heng Tu, C. Huang, J. Juang","doi":"10.1145/3547276.3548516","DOIUrl":null,"url":null,"abstract":"The complexity of the Robot Operating System (ROS) based autonomous software grows as autonomous vehicles get more intelligent. It is a big challenge for system designers to rapidly understand runtime behaviors and performance of such sophisticated software because the conventional tools are insufficient for characterizing the high-level interactions of the modules within the software. In this paper, a new graphical representation, execution flow graph, is devised to represent the execution sequences and related performance statistics of the ROS modules. The execution flow aware profiling is applied on the autonomous software, Autoware and Navigation Stack, with encouraging results.","PeriodicalId":255540,"journal":{"name":"Workshop Proceedings of the 51st International Conference on Parallel Processing","volume":"664 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3547276.3548516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity of the Robot Operating System (ROS) based autonomous software grows as autonomous vehicles get more intelligent. It is a big challenge for system designers to rapidly understand runtime behaviors and performance of such sophisticated software because the conventional tools are insufficient for characterizing the high-level interactions of the modules within the software. In this paper, a new graphical representation, execution flow graph, is devised to represent the execution sequences and related performance statistics of the ROS modules. The execution flow aware profiling is applied on the autonomous software, Autoware and Navigation Stack, with encouraging results.
基于ros的自动驾驶软件执行流程感知分析
随着自动驾驶汽车越来越智能,基于机器人操作系统(ROS)的自动驾驶软件的复杂性也在增长。对于系统设计人员来说,快速理解这些复杂软件的运行时行为和性能是一个巨大的挑战,因为传统的工具不足以描述软件中模块的高级交互。本文设计了一种新的图形表示方式——执行流图,来表示ROS模块的执行顺序和相关性能统计数据。在自主软件Autoware和Navigation Stack上应用了执行流感知分析,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信