A tumor classification model using least square regression

Xiao-yun Chen, Cairen Jian
{"title":"A tumor classification model using least square regression","authors":"Xiao-yun Chen, Cairen Jian","doi":"10.1109/ICNC.2014.6975931","DOIUrl":null,"url":null,"abstract":"An accurate tumor classification is important to diagnosis and treatment cancers. The conventional methods for tumor classification include training and testing phases, which may cause over fitting. Although this problem can be avoided by using sparse representation classification, the existing sparse representation methods for tumor classification are inefficient. In this paper, an efficient and robust classification model LSRC based on least square regression and nearest subspace rule is adopted for tumor classification. To investigate its performance, our proposed model LSRC is compared with 3 existing methods on 9 tumor datasets. The experimental results show that our proposed model can use less time to achieve higher classification accuracy.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An accurate tumor classification is important to diagnosis and treatment cancers. The conventional methods for tumor classification include training and testing phases, which may cause over fitting. Although this problem can be avoided by using sparse representation classification, the existing sparse representation methods for tumor classification are inefficient. In this paper, an efficient and robust classification model LSRC based on least square regression and nearest subspace rule is adopted for tumor classification. To investigate its performance, our proposed model LSRC is compared with 3 existing methods on 9 tumor datasets. The experimental results show that our proposed model can use less time to achieve higher classification accuracy.
使用最小二乘回归的肿瘤分类模型
准确的肿瘤分类对肿瘤的诊断和治疗具有重要意义。传统的肿瘤分类方法包括训练和测试两个阶段,这可能会导致过度拟合。虽然使用稀疏表示分类可以避免这一问题,但现有的稀疏表示肿瘤分类方法效率低下。本文采用基于最小二乘回归和最近邻子空间规则的高效鲁棒分类模型LSRC对肿瘤进行分类。为了研究其性能,将我们提出的LSRC模型与现有的3种方法在9个肿瘤数据集上进行了比较。实验结果表明,该模型可以在较短的时间内获得较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信